Sharp inequalities for Toader mean in terms of other bivariate means

Sharp inequalities for Toader mean in terms of other bivariate means

In the paper, the author discovers the best constants $\alpha_1$, $\alpha_2$, $\alpha_3$, $\beta_1$, $\beta_2$ and $\beta_3$ for the double inequalities \[ \alpha_1 A\left(\frac{a-b}{a+b}\right)^{2n+2} < T(a,b)-\frac{1}{4}C-\frac{3}{4}A-A\sum_{k=1}^{n-1}\frac{(\frac{1}{2},k)^2}{4((k+1)!)^2}\left(\frac{a-b}{a+b}\right)^{2k+2}<\beta_1 A\left(\frac{a-b}{a+b}\right)^{2n+2} \] \[ \alpha_2 A\left(\frac{a-b}{a+b}\right)^{2n+2} < T(a,b)-\frac{3}{4}\overline{C}-\frac{1}{4}A-A\sum_{k=1}^{n-1}\frac{(\frac{1}{2},k)^2}{4((k+1)!)^2}\left(\frac{a-b}{a+b}\right)^{2k+2}<\beta_2 A\left(\frac{a-b}{a+b}\right)^{2n+2} \] and \[ \alpha_3 A\left(\frac{a-b}{a+b}\right)^{2n+2} < \frac{4}{5}T(a,b)+\frac{1}{5}H-A-A\sum_{k=1}^{n-1}\frac{(\frac{1}{2},k)^2}{5((k+1)!)^2}\left(\frac{a-b}{a+b}\right)^{2k+2}<\beta_3 A\left(\frac{a-b}{a+b}\right)^{2n+2} \] to be valid for all $a,b>0$ with $a\ne b$ and $n=1,2,\cdots$, where \[ C\equiv C(a,b)=\frac{a^2+b^2}{a+b},\,\overline{C}\equiv\overline{C}(a,b)=\frac{2(a^2+ab+b^2)}{3(a+b)},\, A\equiv A(a,b)=\frac{a+b}{2}, \] \[ H\equiv H(a,b) =\frac{2ab}{a+b},\quad T(a,b)=\frac2{\pi}\int_0^{\pi/2}\sqrt{a^2\cos^2\theta+b^2\sin^2\theta}\,{\rm d}\theta \] are respectively the contraharmonic, centroidal, arithmetic, harmonic and Toader means of two positive numbers $a$ and $b$, $ (a,n)=a(a+1)(a+2)(a+3)\cdots (a+n-1)$ denotes the shifted factorial function. As an application of the above inequalities, the author also find a new bounds for the complete elliptic integral of the second kind.

___

  • [1] H. Alzer, S.-L. Qiu, Monotonicity theorems and inequalities for the complete elliptic integrals, J. Comput. Appl. Math. 172, 289–312, 2004.
  • [2] G.D. Anderson, M.K. Vamanamurthy, M. Vuorinen, Conformal Invariants, Inequalities, and Quasiconformal Maps, John Wiley & Sons, New York, 1997.
  • [3] R.W. Barnard, K. Pearce, and K.C. Richards, An inequality involving the generalized hypergeometric function and the arc length of an ellipse, SIAM J. Math. Anal. 31(3), 693–699, 2000.
  • [4] F. Bowman, Introduction to Elliptic Functions with Applications, Dover Publications, New York, 1961.
  • [5] P.F. Byrd and M.D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, Springer-Verlag, New York, 1971.
  • [6] Y.-M. Chu, M.-K.Wang, Inequalities between arithmetic-geometric, Gini, and Toader means, Abstr. Appl. Anal. 2012, Art. ID 830585, 2012.
  • [7] Y.-M. Chu, M.-K. Wang, X.-Y. Ma, Sharp bounds for Toader mean in terms of contraharmonic mean with applications, J. Math. Inequal. 7 (2), 161–166, 2013.
  • [8] Y.-M. Chu, M.-K. Wang, S.-L. Qiu, Optimal combinations bounds of root-square and arithmetic means for Toader mean, Proc. Indian Acad. Sci. Math. Sci. 122, 41–51, 2012.
  • [9] Y.-M. Chu, M.-K. Wang, S.-L. Qiu, Optimal Lehmer mean bounds for the Toader mean. Results Math. 61, 223–229, 2012.
  • [10] Y.-M. Chu, M.-K. Wang, S.-L. Qiu, Y.-P. Jiang, Bounds for complete elliptic integrals of the second kind with applications, Comput. Math. Appl. 63, 1177–1184, 2012.
  • [11] Y. Hua, Bounds For The Arithmetic Mean In Terms Of The Toader Mean And Other Bivariate Means, Miskolc Math. Notes 18 (1) , 203–210, 2017.
  • [12] Y. Hua, F. Qi, The Best Bounds for Toader Mean in Terms of the Centroidal and Arithmetic Means, Filomat 28 (4), 775–780, 2014.
  • [13] Y. Hua, F. Qi, A double inequality for bounding Toader mean by the centroidal mean, Proc. Indian Acad. Sci. (Math. Sci.) 124 (4), 527–531, 2014.
  • [14] W.-D. Jiang, F. Qi, A double inequality for the combination of Toader mean and the arithmetic mean in terms of the contraharmonic mean, Publ. Inst. Math. 99 (113), 237–242, 2016.
  • [15] W.-H. Li, M.-M. Zheng, Some inequalities for bounding Toader mean, J. Func. Spaces Appl. 2013, Art. ID 394194, 5 pages, 2013.
  • [16] W.-M. Qian, H.-H. Chu, M.-K. Wang, Y.-M. Chu, Sharp inequalities for the Toader mean of order -1 in terms of other bivariate means, J. Math. Inequal 16 (1), 127–141, 2022.
  • [17] S.-L. Qiu, J.-M. Shen, On two problems concerning means, J. Hangzhou Insitute Electronic Engineering (In Chinese) 17 (3), 1–7, 1997.
  • [18] Y.-Q. Song, W.-D. Jiang, Y.-M. Chu, D.-D. Yan, Optimal bounds for Toader mean in terms of arithmetic and contraharmonic means, J. Math. Inequal 7 (4), 751–757, 2013.
  • [19] Gh. Toader, Some mean values related to the arithmetic-geometric mean, J. Math. Anal. Appl. 218, 358–368, 1998.
  • [20] M. Vuorinen, Hypergeometric functions in geometric function theory, in: Special Functions and Differential Equations, Proceedings of a Workshop held at The Institute of Mathematical Sciences, Madras, India, January 13-24, 1997, Allied Publ., New Delhi, 119–126, 1998.
  • [21] M.-K. Wang, Y.-M. Chu, Y.-M. Li, W. Zhang, Asymptotic expansion and bounds for complete elliptic integrals, Math. Inequal. Appl. 23 (3), 821–841, 2020.
  • [22] M.-K. Wang, Y.-M. Chu, S.-L. Qiu, Y.-P. Jiang, Bounds for the perimeter of an ellipse, J. Approx. Theory. 164, 928–937, 2012.
  • [23] Z.-H. Yang, Sharp approximations for the complete elliptic integrals of the second kind by one-parameter means, J. Math. Anal. Appl. 467, 446–461, 2018.
  • [24] Z.-H. Yang, Y.-M. Chu, W.Zhang, High accuracy asymptotic bounds for the complete elliptic integral of the second kind, Appl. Math. Comput. 348, 552–564, 2019.
  • [25] Z.-H. Yang, Y.-M. Chu, W. Zhang, Monotonicity of the ratio for the complete elliptic integral and Stolarsky mean, J. Inequal. Appl. 2016, 176, 2016.
  • [26] Z.-H. Yang„ Y.-M. Chu, W. Zhang, Accurate approximations for the complete elliptic integral of the second kind, J. Math. Anal. Appl. 438, 875–888, 2016.
  • [27] Z.-H. Yang, Y.-M. Chu, X.-H. Zhang, Sharp Stolarsky mean bounds for the complete elliptic integral of the second kind, J. Nonlinear Sci. Appl. 10, 929–936, 2017.
  • [28] Z.-H. Yang, W.-M. Qian, Y.-M. Chu, W.Zhang, Monotonicity rule for the quotient of two functions and its application, J. Inequal. Appl. 2017, 106, 2017.
  • [29] Z.-H. Yang, J.-F. Tian, Sharp bounds for the Toader mean in terms of arithmetic and geometric means, RACSAM 115, 99, 2021.
  • [30] F. Zhang, W.-M. Qian, H.-Z. Xu, Optimal bounds for Seiffert-like elliptic integral mean by harmonic, geometric, and arithmetic means, J. Inequal. Appl 2022, 33, 2022.
  • [31] T.-H. Zhao, H.-H. Chu , Y.-M. Chu, Optimal Lehmer mean bounds for the nth powertype Toader means of $n=-1,1,3$, J. Math. Inequal 16 (1), 157–168, 2022.
  • [32] T.-H. Zhao, M.-K. Wang, Y.-Q. Dai and Y.-M. Chu, On the generalized power-type Toader mean, J. Math. Inequal. 16(1), 247–264, 2022.