Remainders of locally ƒ\v{C}ech-complete spaces and homogeneity

Remainders of locally ƒ\v{C}ech-complete spaces and homogeneity

We study remainders of locally ƒƒ\v{C}ech-complete spaces. In particular, it is established that if $X$ is a locally ƒ\v{C}ƒech-complete non-ƒ\v{C}ƒech-complete space, then no remainder of $X$ is homogeneous (Theorem 3.1). We also show that if $Y$ is a remainder of a locally ƒƒ\v{C}ech-complete space $X$, and every $y\in Y$ is a $G_\delta$-point in $Y$, then the cardinality of $Y$ doesn't exceed $2^\omega$. Several other results are obtained.

___

  • A.V. Arhangel'skii, On a class of spaces containing all metric and all locally compact spaces, Mat. Sb. 67(109) (1965), 55-88. English translation: Amer. Math. Soc. Transl. 92 (1970), 1-39.
  • A.V. Arhangel'skii, Remainders of metrizable spaces and a generalization of Lindel\"{o}f - spaces, Fund. Mathematicae 215 (2011), 87-100.
  • A.V. Arhangel'skii, Remainders of metrizable and close to metrizable spaces, Fundamenta Mathematicae 220 (2013), 7181.
  • A.V. Arhangel'skii, A generalization of \v{C}ƒech-complete spaces and Lindel\"{o}f -spaces, Com- ment. Math. Universatis Carolinae 54:2 (2013), 121139.
  • A.V. Arhangel'skii and M.M. Choban, Some generalizations of the concept of a p-space, Topology and Appl. 158 (2011), 1381 - 1389.
  • E.K. van Douwen, F. Tall, and W. Weiss, Non-metrizable hereditarily Lindel\"{o}f spaces with point-countable bases from CH, Proc. Amer. Math. Soc. 64 (1977), 139-145.
  • R. Engelking, General Topology, PWN, Warszawa, 1977.
  • M. Henriksen and J.R. Isbell, Some properties of compactications, Duke Math. J. 25 (1958), 83-106.
  • K. Nagami, $\Sigma$-spaces, Fund. Mathematicae 61 (1969), 169-192.
  • S.J. Nedev, $o$-metrizable spaces, Trudy Mosk. Matem. O-va 24 (1971), 201-236.
Hacettepe Journal of Mathematics and Statistics-Cover
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 2002
  • Yayıncı: Hacettepe Üniversitesi Fen Fakultesi