On sum of powers of the signless Laplacian eigenvalues of graphs

On sum of powers of the signless Laplacian eigenvalues of graphs

For a graph G and a real number $alpha$ ( $alphaneq$ 0, 1), the graph invariant $S_alpha$(G) is the sum of the $alpha^{th}$ power of the signless Laplacian eigenvalues of G. Let IE(G) denote the incidence energy of G, i.e., IE(G) = S1 2 (G). This note presents some properties and bounds for $S_alpha$(G) and IE(G).

___

  • [1] Akbari, S., Ghorbani, E., Koolen, J.H. and Oboudi, M.R. On sum of powers of the Lapla- cian and signless Laplacian eigenvalues of graphs, Electron. J. Combin. 17, R115, 2010.
  • [2] Anderson, W.N. and Morley, T.D. Eigenvalues of the Laplacian of a graph, Linear Multi- linear Algebra 18, 141–145, 1985.
  • [3] Chen, Y.Q. and Wang, L.G. Sharp bounds for the largest eigenvalue of the signless Lapla- cian of a graph, Linear Algebra Appl. 433, 908–913, 2010.
  • [4] Cvetkovi´c, D., Rowlinson, P. and Simi´c, S.K. Signless Laplacians of finite graphs, Linear Algebra Appl. 423, 155–171, 2007.
  • [5] Cvetkovi´c, D., Rowlinson, P. and Simi´c, S.K. Eigenvalue bounds for the signless Laplacian, Publ. Inst. Math. (Beograd), 81 (95), 11–27, 2007.
  • [6] Cvetkovi´c, D. and Simi´c, S.K. Towards a spectral theory of graphs based on the signless Laplacian II, Linear Algebra Appl. 432, 2257–2272, 2010.
  • [7] Gutman, I. The energy of a graph, Ber. Math Statist. Sekt. Forschungsz. Graz. 103, 1–22, 1978.
  • [8] Gutman, I. Total n-electron energy of benzenoid hydrocarbons, Topics Curr. Chem. 162, 29–63, 1992.
  • [9] Gutman, I. The energy of a graph: odd and new results, in : A. Betten, A. Kohnert, R. Laue, A. Wassermann (Eds.) (Algebraic Combinatorics and Applications, Springer-Verlag, Berlin, 2001), 196–211.
  • [10] Gutman, I., Kiani, D., Mirzakhah, M. and Zhou, B. On incidence energy of a graph, Linear Algebra Appl. 431, 1223–1233, 2009.
  • [11] Gutman, I. and Mohar, B. The quasi-Wiener and the Kirchhoff indices coincide, J. Chem. Inf. Comput. Sci. 36, 982–985, 1996.
  • [12] Gutman, I. and Trinajsti´c, N. Graph theory and molecular orbitals, Total n-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17, 535–538, 1972.
  • [13] Gutman, I. and Zhou, B. Laplacian energy of a graph, Linear Algebra Appl. 414, 29–37, 2006.
  • [14] Jooyandeh, M.R., Kiani, D. and Mirzakhah, M. Incidence energy of a graph, MATCH Commun. Math. Comput. Chem. 62, 561–572, 2009.
  • [15] Li, J. and Pan, Y. A note on the second largest eigenvalue of the Laplacian matrix of a graph, Linear Multilinear Algebra 48, 117–121, 2000.
  • [16] Liu, J.P. and Liu, B. L. A Laplacian-energy-like invariant of a graph, MATCH Commun. Math. Comput. Chem. 59, 355–372, 2008.
  • [17] Liu, M.H. and Liu, B. L. New sharp upper bounds for the first Zagreb index, MATCH Commun. Math. Comput. Chem. 62, 689–698, 2009.
  • [18] Liu, M.H. and Liu, B. L. The signless Laplacian spread, Linear Algebra Appl. 432 (2-3), 505–514, 2010.
  • [19] Li, X. L. and Zheng, J. A unified approach to the extremal trees for different indices, MATCH Commun. Math. Comput. Chem. 54, 195–208, 2005.
  • [20] Marshall, A.W. and Olkin, I. Inequalities, Theory of Majorization and its Applications (Academic Press, New York, 1979).
  • [21] Merris, R. Laplacian matrices of graphs: a survey, Linear Algebra Appl. 197-198, 143–176, 1994.
  • [22] Merris, R. Laplacian graph eigenvectors, Linear Algebra Appl. 278, 221–236, 1998.
  • [23] Pavlovi´c, L. Maximal value of the zeroth-order Randi´c index, Discrete Appl. Math. 127, 615–626, 2003.
  • [24] Stevanovi´c, D., Ili´c, A., Onisor, C. and Diudea, M. LEL–a newly designed molecular de- scriptor, Acta Chim. Slov. 56, 410–417, 2009.
  • [25] Tian, G.X., Huang, T. Z. and Zhou, B. A note on sum of powers of the Laplacian eigenvalues of bipartite graphs, Linear Algebra Appl. 430, 2503–2510, 2009.
  • [26] Zhou, B. On sum of powers of the Laplacian eigenvalues of graphs, Linear Algebra Appl. 429, 2239–2246, 2008.
  • [27] Zhou, B. On sum of powers of Laplacian eigenvalues and Laplacian Estrada index of graphs, MATCH Commun. Math. Comput. Chem. 62, 611–619, 2009.