Some distance-based topological indices of a non-commuting graph

Some distance-based topological indices of a non-commuting graph

Let G be a non-Abelian group and let Z(G) be the center of G. The noncommuting graph of G, $Gamma$(G), is a graph with vertex set G Z(G) and two distinct vertices x and y are adjacent if and only if xy 6= yx. In this paper the Hyper-Wiener, Schultz, Gutman, eccentric connectivity and Zagreb group indices of this graph are computed.

___

  • [1] Abdollahi, A., Akbari, S. and Maimani, H.R. Non-commuting graph of a group, J. Algebra 298, 468–492, 2006.
  • [2] Ashrafi, A.R., Doˇsli´c, T. and Hamzeh, A. The Zagreb coindices of graph operations, Discrete Appl. Math. 158, 1571–1578, 2010.
  • [3] Ashrafi, A.R., Doˇsli´c, T. and Saheli, M. The eccentric connectivity index of TUC4C8(R) nanotubes, MATCH Commun. Math. Comput. Chem. 65, 221–230, 2011.
  • [4] Ashrafi, A.R., Saheli, M. and Ghorbani, M. The eccentric connectivity index of nanotubes and nanotori, J. Comput. Appl. Math. 235, 4561–4566, 2011.
  • [5] Azad, A. and Eliasi, M. Distance in the non-commutative graph of groups, Ars Combinato- ria, in press.
  • [6] Buckley, F. and Harary, F. Distances in Graphs (Addison-Wesley, Redwood City, CA, 1990).
  • [7] Darafsheh, M.R. and Poursalavati, N. S. On the existence of the orthogonal basis of the symmetry classes of tensors associated with certain groups, SUT J. Math. 37 (1), 1–17, 2001.
  • [8] Ghorbani, M., Ashrafi, A.R. and Hemmasi, M. Eccentric connectivity polynomials of fullerenes, Optoelectron. Adv. Mater. -Rapid Comm. 3 (12), 1306–1308, 2009.
  • [9] Gutman, I. Selected properties of the Schultz molecular topological index, J. Chem. Inf. Comput. Sci. 34, 1087–1089, 1994.
  • [10] Gutman, I. and Trinajsti´c, N. Graph theory and molecular orbitals, Total n-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17, 535–538, 1972.
  • [11] Gutman, I. A formula for the Wiener number of trees and its extension to graphs containing cycles, Graph Theory Notes of New York 27, 9–15, 1994.
  • [12] Gutman, I. and Das, K.C. The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50, 83–92, 2004.
  • [13] Gutman, I., Yan, W., Yeh, Y. -N. and Yang, B. -Y. Generalized Wiener indices of zigzagging pentachains, J. Math. Chem. 42, 103–117, 2007.
  • [14] Isaacs, I.M. Coprime group actions fixing all nonlinear irreducible characters, Canad. J. Math. 41, 68–82, 1989.
  • [15] James, G. and Liebeck, M. Representations and Characters of Groups (Second edition, Cambridge Univ. Press, New York, 2001).
  • [16] Khalifeh, M.H., Yousefi-Azari, H. and Ashrafi, A.R. The first and second Zagreb indices of some graph operations, Discrete Appl. Math. 157, 804–811, 2009.
  • [17] Klein, D. J., Lukovits, I. and Gutman, I. On the definition of the hyper-Wiener index for cycle-containing structures, J. Chem. Inf. Comput. Sci. 35, 50-ˆu52, 1995.
  • [18] Kumar, V., Sardana, S. and Madan, A.K. Predicting anti-HIV activity of 2,3-diaryl-1,3- thiazolidin-4-ones: computational approaches using reformed eccentric connectivity index, J. Mol. Model. 10, 399-ˆu407, 2004.
  • [19] Moghaddamfar, A.R. About noncommuting graphs, Siberian Mathematical Journal 47, 911– 914, 2006.
  • [20] Neumann, B.H. A problem of Paul Erd¨os on groups, J. Aust. Math. Soc. Ser. A 21, 467–472, 1976.
  • [21] Riedl, J.M. Character degrees, class size, and normal subgroups of a certain class of pgroups , J. Algebra 218 (1), 190–215, 1999.
  • [22] Rocke, D.M. p-groups with abelian centralizers, Proc. London Math. Soc. 30 (3), 55–75, 1975.
  • [23] Sardana, S. and Madan, A.K. Application of graph theory: Relationship of molecular connectivity index, WienerÆs index and eccentric connectivity index with diuretic activity, MATCH Commun. Math. Comput. Chem. 43, 85ˆu-98, 2001.
  • [24] Schultz, H.P. Topological organic chemistry 1. Graph theory and topological indices of Alkanes , J. Chem. Inf. Comput. Sci. 29, 227–228, 1989.
  • [25] Sharma, V., Goswami, R. and Madan, A.K. Eccentric connectivity index: A novel highly discriminating topological descriptor for structure-property and structure-activity studies, J. Chem. Inf. Comput. Sci. 37, 273–282, 1997.
  • [26] Wiener, H. Structural determination of the paraffin boiling points, J. Am. Chem. Soc. 69, 17–20, 1947.
  • [27] West, D.B. Introduction to Graph Theory (Prentice-Hall, Upper Saddle River, NJ, 1996).
  • [28] Zhou, B. Zagreb indices, MATCH Commun. Math. Comput. Chem. 52, 113–118, 2004.
  • [29] Zhou, B. and Du, Z. On eccentric connectivity index, MATCH Commun. Math. Com- put. Chem. 63, 181–198, 2010.
  • [30] Zhou, B. and Gutman, I. Relations between Wiener, hyper-Wiener and Zagreb indices, Chem. Phys. Lett. 394, 93–95, 2004.
  • [31] Zhou, B. and Gutman, I. Further properties of Zagreb indices, MATCH Commun. Math. Comput. Chem. 54, 233–239, 2005.