On semisymmetric cubic graphs of order $10p^3$
On semisymmetric cubic graphs of order $10p^3$
Connected cubic graphs of order $10p^ 3$ which admit an automorphism group acting semisymmetrically are investigated. We prove that every connected cubic edge-transitive graph of order 10p3 is vertex-transitive, where p is a prime.
___
- [1] Alaeiyan, M. and Ghasemi, M. Cubic edge-transitive graphs of oredr 8p 2, Bull. Austral. Math. Soc. 77, 315–323, 2008.
- [2] Archdeacon, D., Kwak, J.H., Lee, J and Sohn, M.Y. Bipartite covering graphs, Discrete Math. 214, 51–63, 2000.
- [3] Conder, M. and Malnic, A., Marusic, D. and Potocnik, P. A census of semisymmetric cubic graphs on up to 768 vertices, J. Algebraic Combin. 23, 255–294, 2006.
- [4] Dixon, J.D. and Mortimer, B. Permutation Groups (Springer-Verlag, New York, 1996).
- [5] Du, S. S. and Xu, M.Y. A classification of semisymmetric graphs of order 2pq, Com. in Algebra 28 (6), 2685–2715, 2000.
- [6] Feng, Y.Q. and Kwak, J.H. Classifying cubic symmetric graphs of order 10p or $10p^ 2$, Sci. China Ser. A. 49, 300–319, 2006.
- [7] Folkman, J. Regular line-symmetric graphs, J. Combin. Theory 3, 215–232, 1967.
- [8] Gorenstein, D. Finite Simple Groups (New York: Plenum Press, 1982).
- [9] Lu, Z., Wang, C.Q. and Xu, M.Y. On semisymmetric cubic graphs of order 6p 2, Science in Chaina Ser. A Math. 47, 11–17, 2004.
- [10] Malnic, A., Marusic, D. and Wang, C.Q. Cubic edge-transitive graphs of order 2p 3, Discrete Math. 274, 187–198, 2004.
- [11] Malnic, A., Marusic, D. and Potocnik, P. On cubic graphs admitting an edge-transitive solvable group, J. Algebraic Combin. 20 (2004), 99–113, 2004.
- [12] Tutte, W.T. Connectivity in Graphs (Toronto University Press, Toronto, 1966).
- [13] Wang, C.Q. Semisymmetric Cubic Graphs of Order $2p^ 2 q$ ($Com^ 2$ MaC Preprint Series, 2002).
- [14] Wielandant, H. Finite Permutation Groups (Acadamic Press, New York, 1964).