New inequalities of Huygens-type involving tangent and sine functions
New inequalities of Huygens-type involving tangent and sine functions
Using the estimations of the even-indexed Bernoulli number and Euler number this paper established some new inequalities for the three functions $2\left( \sin x\right) /x+\left( \tan x\right) /x$, $\left( \sin x\right) /x+2\left( \tan (x/2)\right) /\left( x/2\right) $ and $2x/\sin x+x/\tan x$ bounded by the powers of tangent function.
___
- [1] C. Huygens, Oeuvres completes, publiees par la Societe hollandaise des science, Haga,
1888–1940 (20 volumes).
- [2] F.T. Campan, The Story of Number, in: Ed. Albatros (Ed), Romania, 1977.
- [3] E. Neuman, On Wilker and Huygens type inequalities, Math. Inequal. Appl. 15 (2),
271–279, 2012.
- [4] Ch.-P. Chen and W.-S. Cheung, Sharpness of Wilker and Huygens Type Inequalities,
J. Inequal. Appl. 2012 (1), 1–11, 2012.
- [5] J.-L. Li, An identity related to Jordan’s inequality, Int. J. Math. Math. Sci. 2006,
Art. id 76782, 2006.
- [6] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, U.S. National Bureau of Standards, Washington,
DC, USA, 1964.
- [7] A. Jeffrey, Handbook of Mathematical Formulas and Integrals, Elsevier Academic
Press, San Diego, Calif, USA, 3rd edition, 2004.
- [8] C. D’Aniello, On some inequalities for the Bernoulli numbers, Rendiconti del Circolo
Matematico di Palermo. Serie II 43 (3), 329–332, 1994.
- [9] H. Alzer, Sharp bounds for the Bernoulli numbers, Archiv der Mathematik, 74 (3),
207–211, 2000.