Intrinsic Equations for a Generalized Relaxed Elastic Line on an Oriented Surface

Anahtar Kelimeler:

-

Intrinsic Equations for a Generalized Relaxed Elastic Line on an Oriented Surface

Keywords:

-,

___

  • Blaschke, W. Vorlesungen ¨uber Differential Geometrie I, (Verlag from Julius Springer, Berlin, 1930).
  • Carmo, M. P. Differential Geometry of Curves and Surfaces (Prectice-Hall, Inc., Englewood Cliffs, New Jersey, 1976).
  • Capovilla, R., Chryssomalakos, C. and Guven, J. Hamiltonians for curves, J. Phys. A: Math. Gen. 35, 6571–6587, 2002.
  • Gray, A. Modern Differential Geometry of Curves and Surfaces with Mathematica (2nd ed. Boca Raton, FL: CRC Press, 1997).
  • Languer, J. Recursion in Curve Geometry, New York J. Math. 5, 25–51, 1999.
  • Manning, G. S. Relaxed elastic line on a curved surface, Quart. Appl. Math. 45 (3), 515–527, 1987.
  • Millman, R and Parker, G. Elements Of Differential Geometry (Prectice-Hall Inc., Engle- wood Cliffs, New Jersey,1977).
  • Nickerson, H. K. and Manning, G. S. Intrinsic equations for a relaxed elastic line on an oriented surface, Geometriae Dedicate 27, 127–136, 1988.
  • Oprea, J. Differential Geometry and Its Applications (Prectice-Hall Inc., New Jersey, 1997).
  • O’Neill, B. Elementary Differential Geometry (Academic Pres Inc., New York, 1966).