Edelstein-type fixed point theorems in compact TVS-cone metric spaces
Edelstein-type fixed point theorems in compact TVS-cone metric spaces
In this paper we prove two fixed point theorems in compact cone metricspaces over normal cones. The first theorem generalizes Edelstein theorem [8] and is different from the generalization obtained in [11]. Thesecond theorem generalizes the main result in [10] and the first theorem.However, the two theorems fail in different categories. Moreover, different versions of the two theorems are proved in TVS-cone metric spacesby making use of the nonlinear scalarization function used very recentlyby Wei-Shih Du in [A note on cone metric fixed point theory and itsequivalence, Nonlinear Analysis,72(5),2259-2261 (2010).] to prove theequivalence of the Banach contraction principle in cone metric spacesand usual metric spaces.
___
- [1] S. Leader, Equivalent Cauchy sequences and contractive fixed points in metric spaces, Studia Math., 76 (1983), 63-67.
- [2] I. A. Rus, Picard operators and applications, Sci. Math., 58 (2003), 191-219.
- [3] P. V. Subrahmanyam, B. Remarks on some fixed point theorems related to Banach's contraction principle, J. Math. Phys. Sci., 8 (1974), 445-457.
- [4] I. A. Rus, A. S. Muresan, V. Muresan Weakly Picard operators on a set with two metrics, Fixed Point Theory, 6 (2005), 323-331.
- [5] I. A. Rus, A. Petrosel, M. A. Serban Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc., 215 (2006), 3-22.
- [6] J. Caristi, Weakly Picard operators on a set with two metrics, Fixed Point Theory, 6 (2005), 323-331.
- [7] J. Caristi, W. A. Kirk Geometric fixed point theory and inwardness conditions, In Lecture notes in math. , 490 (1975), Springer, Berlin 74-83.
- [8] M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc. 37 (1962), 74-79.
- [9] A. Meir, E. Keeler, A theoerm on contraction mappings, J. Math. Anal. Appl. , 28 (1969),326-329.
- [10] T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Analysis, Theory, Methods and Applications doi: 10.1016/j.na.2009.04.017.
- [11] L-G Huang, X. Zhang , Cone metric spaces and fixed point theorems of contractive mappings , Journal of Mathematical Analysis and Applications 323 (2007), 1468-1476.
- [12] D. Wardowski, Endpoints and fixed points of set-valued contractions in cone metric spaces, Nonlinear Analysis, Theory, Methods and Applications 71 (2009), 512-516.
- [13] D. Ili¸c, V. Rakocevi´c, Common fixed points for maps on cone metric space, Journal of Mathematical Analysis and Applications 341 (2008), 876-882.
- [14] ?I. S¸ahin, M. Telci, Fixed points on contractive mappings on complete cone metric spaces, Hacettepe Journal of Mathematics and Statistics, 347 (2008),719-724.
- [15] D. Turkoglu, M. Abuloha, Cone metric spaces and fixed point theorems in diametrically contractive mappings, Acta Mathematica Sinica , English Series 2010, Vol. 26, No. 3, pp.489- 496.
- [16] Sh. Rezapour and R.H.Haghi, Fixed Point of Multifunctions on cone metric spaces, Numerical Functional Analysis and optimization, 30 (7-8):825-832, 2009.
- [17] M. Abbas, B. E. Rhoades, Fixed and periodic point results in cone metric spaces, Applied Mathematics Letters 22, 4 (2009), 511-515.
- [18] S. Radenovi`c, B. E. Rhoades, Fixed point theorem for two non-self mappings in cone metric spaces, Computers and Mathematics with Applications 57, 10 (2009), 1701-1707.
- [19] ?I. Altun, G. Durmaz, Some fixed point theorems on ordered cone metric spaces, Rendiconti del Circolo Mathematico di Palermo 58 (2009), 319-325.
- [20] D. Turkoglu, M. Abuloha, T. Abdeljawad, KKM mappings in cone metric spaces and some fixed point theorems Nonlinear Analysis: Theory, Methods & Applications, Vol 72, Issue 1 (2010), 348-353.
- [21] K. Deimling , Nonlinear Functional Analysis. Springer-Verlage, 1985.
- [22] Y. A. Abramovich C. D. Aliprantis , An invitation to Operator Theory, American Mathematical Society (2002).
- [23] C. D. Aliprantis, R. Tourky , Cones and Duality, American Mathematical Society (2007).
- [24] Sh. Rezapour, R. Hamlbarani Haghi, Some notes on the paper " Cone metric spaces and fixed point theorems of contractive mappings" Journal of Mathematical Analysis and Applications 345 (2008), 719-724.
- [25] Du Wei-Shih: A note on cone metric fixed point theory and its equivalence Nonlinear Analysis,72(5),2259-2261,(2010).
- [26] I. Beg, A. Azam, M. Arshad, Common fixed points for maps on topological vector space valued cone metric spaces, Inter. J. Math. Math. Sciences (2009), 8 pages, doi:10.1155/2009/560264.
- [27] Zoran Kadelburg, Stojan Radenovi´c, Vladimir Rako?cevi´c, Topological Vector Spaces Valued Cone Metric Spaces and Fixed Point Theorems, Fixed Point Theory and Applications, 2010, 2010:170253 doi:10.1155/2010/170253.
- [28] Stojan Radenovi´c, Common fixed point under contractive conditions in cone metric spaces, Computers and Mathematics with Applications 58 (2009) 1273-1278.
- [29] Mirjana Pavlovi´c, Stojan Radenovi´c and Slobodan Radojevi´c, Abstract metric spaces and Sehgal-Guseman-type theorems, Computers and Mathematics with Applications 60 (2010) 865-872.
- [30] A. Amini-Harandi, M. Fakhar, Fixed point theory in cone metric spaces obtained via the scalarization method, Computers and Mathematics with Applications 59 (2010) 3529-3534.
- [31] Thabet Abdeljawad, Erdal Karapınar, A gap in the paper "A note on cone metric fixed point theory and its equivalence" [Nonlinear Anal. 72(5), (2010), 2259-2261], Gazi University Journal of Science. 24(2):233-234 (2011).