Approximation of fractional order Chemostat model with nonstandard nite di erence scheme

Approximation of fractional order Chemostat model with nonstandard nite di erence scheme

In this paper, the fractional-order form of three dimensional chemostatmodel with variable yields is introduced. The stability analysis of thisfractional system is discussed in detail. In order to study the dynamicbehaviours of mentioned fractional system, the well known nonstandardnite dierence (NSFD) scheme is implemented. The proposed NSFDscheme is compared with the forward Euler and fourth order RungeKuttamethods. Numerical results show that the NSFD approach iseasy and accurate when applied to fractional-order chemostat model.

___

  • S. B. Yuste, L. Acedo and K. Lindenberg, Reaction front in an A + B −→ C reactionsubdiffusion process, Physical Review E, 69 (2004), Article ID 036126.
  • H. L. Smith and P. Waltman, The Theory of the Chemostat, Cambridge Univ. Press, Cambridge 1995.
  • H. Sheng, Y. Q. Chen and T. S. Qiu, Fractional Processes and Fractional-Order Signal Processing, Springer, New York, NY, USA, 2012.
  • I. Podlubny, Fractional Dierential Equations, Academic Press, New York 1999. .
  • S. S. Pilyugin and P. Waltman, Multiple limit cycles in the chemostat with variable yield, Math. Biosci., 182 (2003), 151-166.
  • R. E. Mickens, Nonstandard Finite Dierence Models of Differential Equations World Scientifc, 1994
  • R. E. Mickens, A. Smith, Finite-dierence models of ordinary differential equations : infiuence of denominator functions, J. Franklin Inst., 327 (1990), 143-149.
  • R. E. Mickens, Applications of Nonstandard Finite Difference Schemes, Singapore 2000.
  • R. E. Mickens, Advances in the Applications of Nonstandard Finite Dierence Schemes, Wiley-Interscience, Singapore 2005.
  • R. E. Mickens, Discretizations of nonlinear dierential equations using explicit nonstandard methods , Journal of Computational and Applied Mathematics, 110 (1999), 181-185.
  • R. E. Mickens, Calculation of denominator functions for nonstandard finite difference schemes for differential equations satisfying a positivity condition, Numerical Methods for Partial Differential Equations, 23 (2007), 672-691
  • D. Matignon, Stability result on fractional dierential equations with applications to control processing, Computational engineering in systems applications, 1996, 963-968.
  • W. Lin, Global existence theory and chaos control of fractional dierential equations, Journal of Mathematical Analysis and Applications, 332 ( 2007), 709-726.
  • X. Huang and L. M. Zhu, Bifurication in the stable manifold of the bioreactor with nth and mth order polynomial yields, Journal of Mathematical Chemistry, 46 (2009), 199-213.
  • Y. Ferdi, Some applications of fractional order calculus to design digital filters for biomedical signal processing, Journal of Mechanics in Medicine and Biology, 12 ( 2012), Article ID 12400088, 13 pages.
  • R. Hilfer, Applications of Fractional Calculus in Physics, World Scientifc, Singapore, 2000.
  • L. Debnath, Recent applications of fractional calculus to science and engineering, International Journal of Mathematics and Mathematical Sciences, 54 ( 2003) 3413-3442.
  • H. Xu, Analytical approximations for a population growth model with fractional order, Communications in Nonlinear Science and Numerical Simulation, 14 (2009), 1978-1983.
  • A. M. A. El-Sayed,A. E. M. El-Mesiry, and H. A. A. El-Saka, On the fractional-order logistic equation, Applied Mathematics Letters, 20 ( 2007), 817-823.
  • W.-C. Chen, Nonlinear dynamics and chaos in a fractional-order nancial system, Chaos, Solitons and Fractals, 36 ( 2008), 1305-1314.
  • K. S. Cole, Electric conductance of biological systems, Cold Spring Harbor Symposia on Quantitative Biology, 107-116, 1993.
  • K. Assaleh and W. M. Ahmad, Modeling of speech signals using fractional calculus, in: Proceedings of the 9th International Symposiumon Signal Processing and its Applications (ISSPA'07), Sharjah, United Arab Emirates, February 2007.
  • J. Arino, S. S. pilyugin and G. S. K. Wolkowicz, Considerations on yield, nutrient uptake, cellular growth and competition in chemostat models, Can. Appl. Math. Quart. 11 ( 2003), 107-142.
  • A. A. M. Arafa, S. Z. Rida and M. Khalil, Fractional modelling dynamics of HIV and CD4+ Tfcells during primary infection, Nonlinear Biomedical Physics,6 (2012), article 1.
  • E. Ahmed, A. Hashish and F. A. Rihan, On fractional order cancer model, Journal of Fractional Calculus and Applied Analysis, 3 ( 2012), 1-6.
  • E. Ahmed, A. M. A. El-Sayed and H. A. A. El-Saka, On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rössler, Chua and Chen systems, Physics Letters A, 358 (2006), 1-4.