Approximating fixed points of implicit almost contractions

Approximating fixed points of implicit almost contractions

In this paper we obtain constructive fixed point theorems for self op- erators in a general class of almost contractions defined by an implicit relation. Our results unify, extend, generalize, enrich and complement a multitude of related fixed point theorems from the literature.

___

  • [1] Abbas, M. and Ilic, D. Common fixed points of generalized, almost nonexpansive mappings, Filomat 24(3), 11-18, 2010.
  • [2] Abbas, M., Vetro, P. and Khan, S.H. On fixed points of Berinde's contractive mappings in cone metric spaces, Carpathian J. Math. 26(2), 121-133, 2010.
  • [3] Ali, J. and Imdad, M. Unifying a multitude of common fixed point theorems employing an implicit relation, Commun. Korean Math. Soc. 24(1), 41-55, 2009.
  • [4] Aliouche, A. and Djoudi, A. CommoH fixed point theorems for mappings satisfying an implicit relation without decreasing assumption, Hacet. J. Math. Stat. 36(1), 11-18, 2007.
  • [5] Aliouche, A. and Popa, V. General common fixed point theorems for occasionally weakly compatible hybrid mappings and applications, Novi Sad J. Math. 39(1), 89-109, 2009.
  • [6] Babu, G. V. R., Sandhy, M. L. and Kameshwari, M. V. R. A note on a fixed point theorem of Berinde on weak contractions, Carpathian J. Math. 24(1), 8-12, 2008.
  • [7] Berinde, V. On the approximation of fixed points of weak contractive mappings, Carpathian J. Math., 19(1), 7-22, 2003.
  • [8] Berinde, V. Approximating fixed points of weak _____p-contractions, Fixed Point Theory 4 (2), 131-142, 2003.
  • [9] Berinde, V. Approximation fixed points of weak contractions using the Picard iteration, Nonlinear Analysis Forum, 9 (1), 43-53, 2004.
  • [10] Berinde, V. Error estimates for approximating fixed points of quasi contractions, General Math. 13(2), 23Û-34, 2005.
  • [11] Berinde, V. Iterative Approximation of Fixed Points (Springer, Berlin, Heidelberg, New York, 2007).
  • [12] Berinde, V. General constructive fixed point theorems for Ciric-type almost contractions in metric spaces, Carpathian J. Math. 24(2), 10-19, 2008.
  • [13] Berinde, V. Some remarks on a fixed point theorem for Ciric-type almost contractions, Carpathian J. Math. 25(2), 157-162, 2009.
  • [14] Berinde, V. Approximating common fixed points of noncommuting almost contractions in metric spaces, Fixed Point Theory 11 (2), 179-188, 2010.
  • [15] Berinde, V. Common fixed points of noncommuting almost contractions in cone metric spaces, Math. Commun. 15(1), 229-241, 2010.
  • [16] Berinde, V. Stability of Picard iteration for contractive mappings satisfying an implicit relation, Carpathian J. Math. 27(1), 13-23, 2011.
  • [17] Chatterjea, S. K. Fixed-point theorems, C. R. Acad. Bulgare Sci. 25, 727-730, 1972.
  • [18] Di Bari, C. and Vetro, P. Weakly 4>-pairs and common fixed points in cone metric spaces, Rend. Circ. Mat. Palermo (2) 58(1), 125-132, 2009.
  • [19] Kannan, R. Some results on fixed points, Bull. Calcutta Math. Soc. 10, 71-76, 1968.
  • [20] Pâcurar, M. Sequences of almost contractions and fixed points, Carpathian J. Math. 24 (2), 101-109, 2008.
  • [21] Pâcurar, M. Iterative Methods for Fixed Point Approximation (Risoprint, Cluj-Napoca, 2010).
  • [22] Pâcurar, M. A multi-step iterative method for approximating fixed points of Presic-Kannan operators, Acta Math. Univ. Comenian. (N. S.) 79(1), 77-88, 201Ö.
  • [23] Popa, V. Fixed point theorems for implicit contractive mappings, Stud. Cere. St. Ser. Mat. Univ. Bacâu 7, 127-133, 1997.
  • [24] Popa, V. Some fixed point theorems for compatible mappings satisfying an implicit relation, Demonstratio Math. 32, 157-163, 1999.
  • [25] Popa, V. A general fixed point theorem for weakly compatible mappings in compact metric spaces, Turkish J. Math.25(4), 465-474, 2001.
  • [26] Popa, V. Fixed points for non-surjective expansion mappings satisfying an implicit relation, Bul. ŞtiinÇ. Univ. Baia Mare Ser. B Fasc. Mat.-Inform 18(1), 105-108, 2002.
  • [27] Popa, V. A general fixed point theorem for four weakly compatible mappings satisfying an implicit relation, Filomat 19, 45-51, 2005.
  • [28] Popa, V., Imdad, M. and Ali, J. Using implicit relations to prove unified fixed point theorems in metric and 2-metric spaces, Bull. Malays. Math. Sci. Soc. (2) 33(1), 105-120, 2010.
  • [29] Popa, V. and Mocanu, M. Altering distance and common fixed points under implicit relations, Hacet. J. Math. Stat. 38(3), 329-337, 2009.
  • [30] Reich, S. Fixed points of contractive functions, Boll. Un. Mat. Ital. (4) 5, 26-42, 1972.
  • [31] Rhoades, B.E. A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. 226, 257-290, 1977.
  • [32] Rhoades, B.E. Contractive definitions revisited, Contemporary Mathematics 21 189-205, 1983.
  • [33] Rhoades, B. E. Contractive definitions and continuity, Contemporary Mathematics 72, 233-245, 1988.
  • [34] Rus, I. A. Generalized Contractions and Applications (Cluj University Press, Cluj-Napoca, 2001).
  • [35] Rus, I. A-, Petruşel, A. and Petruşel, G. Fixed Point Theory (Cluj University Press, Cluj-Napoca, 2008)
  • [36] Singh, M. R. and Singh, Y. M. On various types of compatible maps and common fixed point theorems for non-continuous maps, Hacet. J. Math. Stat. 40(4), 503-513, 2011.
  • [37] Vetro, P., Azam, A. and Arshad, M. Fixed point results in cone metric spaces for contractions of Zamfirescu-type, Indian J. Math. 52(2), 251-261, 2010.
  • [38] Walter, W. Remarks on a paper by F. Browder about contraction, Nonlinear Anal. TMA 5, 21-25, 1981.
  • [39] Zamfirescu, T. Fix point theorems in metric spaces, Arch. Math. (Basel) 23, 292-298, 1972.