A combinatorial approach to the classi cation of resolution graphs of weighted homogeneous plane curve singularities

A combinatorial approach to the classi cation of resolution graphs of weighted homogeneous plane curve singularities

In this article we describe the classication of the resolution graphs of weighted homogeneous plane curve singularities in terms of their weights by using the concepts of graph theory and combinatorics. The classication shows that the resolution graph of a weighted homogeneous plane curve singularity is always a caterpillar

___

  • Arnold, V. I.; Gusein-Zade, S. M.; Varchenko,A. N. Singularities of Di erentiable Maps, Volume I, Birkh‰user, Boston Basel Berlin (1985).
  • Cutkosky, S. D. and Srinivasan, H.; The algebraic fundamental group of a curve singularity , Journal of Algebra 230, 101-126, (2000).
  • De Jong, T. and P ster, G.; Local Analytic Geometry , Vieweg (2000).
  • Jingen, Y.; Curve Singularities and Graphs , Acta Mathematica Sinica, 6 (1), 87-96, (1990).
  • Koll·r, J.; Lectures on Resolution of Singularities , Princeton University Press (2007).
  • Kang, C.; Analytic Types of Plane Curve Singularities de ned by Weighted Homogeneous Polynomials, Trans. A.M.S. 352 (9), 3995-4006, (2000).
  • Muhly, H.T. and Zariski, O.; The Resolution of Singularities of an Algebraic curve , Amer.J.Math., 61 (1), 107-114, (1939).
  • Saito, K.; Quasihomogene isolierte singularit‰ten von hyper ‰chen , Invent. Math. 14, 123-142, (1971).
  • Wall, C.T.C.; Singular Points of Plane Curves , Cambridge University Press (2004).