Generalized empirical likelihood inference in partially linear errors-in-variables models with longitudinal data

This article is concerned with estimations for longitudinal partial linear models with covariate that is measured with error. We propose a generalized empirical likelihood method by combining correction attenuation and quadratic inference functions. The method takes into accountthe within-subject correlation without involving direct estimation of nuisance parameters in the correlation matrix. We define a generalized empirical likelihood-based statistic for the regression coefficients and residual adjusted empirical likelihood for the baseline function. The empirical log-likelihood ratios are proven to be asymptotically chi-squared, and the corresponding confidence regions are then constructed.Compared with methods based on normal approximations, the generalized empirical likelihood does not require consistent estimators forthe asymptotic variance and bias. Furthermore, a simulation study is conducted to evaluate the performance of the proposed method.

___

  • Arnold, S. F. The Theory of Linear Models and Multivariate Analysis, John Wiley and Sons, New York, 1981.
  • Bai, Y. and Zhu, Z. Y. and Fung, W. K. Partial linear models for longitudinal data based on quadratic inference function, Scandinavian Journal of Statistics, 35(1), 104-118, 2008.
  • Carroll, R. J. and Ruppert, D. and Stefanski, L.A. Measurement Error in Nonlinear Models, Chapman and Hall, New York, 1995.
  • Crowder, M. On the use of a working correlation matrix in using generalised linear models for repeated measures, Biometrika, 82(2), 407-410, 1995.
  • Cui, H. J. and Chen, S. X. Empirical likelihoods confidence region for parameter in the errors-in-variables, Journal of Multivariate Analysis, 84(1), 101-115, 2003.
  • Dziak, J. J. and Li, R. Z. and Qu, A. An overview on quadratic inference function approaches for longitudinal data, New Developments in Biostatistic and Bioinformatics, 49-72, 2009.
  • Fan, J. Q. and Li, R. Z. New estimation and model selection procedures for semiparametric modeling in longitudinal data analysis, Publications of the American Statistical Association, 99(467), 710-723, 2004.
  • He, X. M. and Zhu, Z. Y. and Fung, W. K. Estimation in a semiparametric model for longitudinal data with unspecied dependence structure, Biometrika, 89(3), 579-590, 2002.
  • Huang, J. Z. and Wu, C. O. and Zhou, L. Varying-coefficient models and basis function approximations for the analysis of repeated measurements, Biometrika, 89(1), 111-128, 2002.
  • Kaslow, R. A. and Ostrow, D. G. and Detels, R. and Phair, J. P. and Polk, B. F. and Rinaldo, C. R. The multicenter AIDS cohort study: rationale, organization and selected characteristics of the participants, American Journal of Epidemiology, 126(2), 310-318, 1987.
  • Liang, H. and Hardle, H. and Carrloo, R. J. Estimation in a semiparametric partially linear error-in-variables model, The Annals of Statistics, 27(5), 1519-1535, 1999.
  • Liang, H. and Wang, S. and Carroll, R. J. Partially linear models with missing response variables and error-prone covariates, Biometrica, 94(1), 185-198, 2007.
  • Liang, K-Y. and Zeger, S. L. Longitudinal data analysis using generalized linear models, Biometrika, 73(1), 13-22, 1986.
  • Liu, Q. Estimation of the linear EV model with censored data, Journal of Statistical Planning and Inference, 141(7), 2463-2471, 2011.
  • Owen, A. B. Empirical likelihood ratio confidence intervals for a single functional, Biometrika, 75(2), 237-249, 1988.
  • Owen, A. B. Empirical likelihood confidence regions, The Annals of Statistics, 18, 90-120, 1990.
  • Owen, A. B. Empirical Likelihood, Chapman and Hall, New York, 2001.
  • Qu, A. and Lindsay, B. G. and Li, B. Improving generalised estimating equations using quadratic inference functions, Biometrika, 87(4), 823-836, 2000.
  • Sering, R. Approximation Theorems of Mathematical Statistics, Wiley, New York, 1980.
  • Shao, J. and Xiao, Z. and Xu, R. Estimation with unbalanced panel data having covariate measurement error, Journal of Statistical Planning and Inference, 141(2), 800-808, 2011.
  • Tian, R. Q. and Xue, L. G. Variable selection for semiparametric errors-in variables regression model with longitudinal data, Journal of Statistical Computation and Simulation, 84(8), 1654-1669, 2014.
  • Tian, R. Q. and Xue, L. G. Generalized empirical likelihood inference in generalized linear models for longitudinal data, Communication in Statistics-Theory and Methods, 43(18), 3893-3904, 2014.
  • Wu, C. O. and Chiang, C. T. and Hoover, D. R. Asymptotic confidence regions for kernel smoothing of a varying coefficient model with longitudinal data, Journal of the American Statistical Association, 93(444), 1388-1402, 1998.
  • Xue, L. G. and Zhu, L. X. Empirical likelihood semiparametric regression analysis for longitudinal data, Biometrika, 94(4), 921-937, 2007.
  • Yang, Y. P. and Xue, L. G. and Cheng, W. H. Two-step estimators in partial linear models with missing response variables and error-prone covariates, Journal of Systems Science and Complexity, 24(6), 1165-1182, 2011.
  • Yang, Y. P. and Li, G. R. and Peng, H. Empirical likelihood of varying coefficient errors- in-variables models with longitudinal data, Journal of Multivariate Analysis, 127(3), 1-18, 2014.
  • You, J. and Chen, G. and Zhou, Y. Block empirical likelihood for longitudinal partially linear regression models, Canadian Journal of Statistics, 34(1), 79-96, 2006.
  • Zeger, S. L. and Diggle, P. J. Semiparametric models for longitudinal data with application to CD4 cell numbers in HIV seroconverters, Biometrics, 50(3), 689-699, 1994.
  • Zhao, P. X. and Xue, L. G. Empirical likelihood inferences for semiparametric varying- coefficient partially linear error-prone models with longitudinal data, Journal of Nonpara- metric Statistics, 21(7), 907-923, 2009.