Some generalized numerical radius inequalities involving Kwong functions

We prove several numerical radius inequalities involving positive semidefinite matrices via the Hadamard product and Kwong functions. Among other inequalities, it is shown that if   $X$ is an arbitrary $n\times n$ matrix and $A,B$ are positive semidefinite, then\[ \omega(H_{f,g}(A))\leq k\, \omega(AX+XA), \] which is equivalent to\[\omega\big(H_{f,g}(A,B)\pm H_{f,g}(B,A)\big)\leq k'\,\left\{\omega((A+B)X+X(A+B))+\omega((A-B)X-X(A-B))\right\},\] where  $f$ and $g$ are two continuous functions on $(0,\infty)$ such that $h(t)={f(t)\over g(t)}$ is Kwong, $k=\max\left\{{f(\lambda)g(\lambda)\over \lambda}: {\lambda\in\sigma(A)}\right\}$ and $k'=\max\left\{{f(\lambda)g(\lambda)\over \lambda}: {\lambda\in\sigma(A)\cup\sigma(B)}\right\}$.

___

  • [1] G. Aghamollaei and A. Sheikh Hosseini, Some numerical radius inequalities with positive definite functions, Bull. Iranian Math. Soc. 41 (4), 889-900, 2015.
  • [2] T. Ando and K. Okubo, Induced norms of the Schur multiplication operator, Linear Algebra Appl. 147, 181-199, 1991.
  • [3] K.M.R. Audenaert, A characterization of anti-Lowner function, Proc. Amer. Math. Soc. 139 (12), 4217-4223, 2011.
  • [4] M. Bakherad and F. Kittaneh, Numerical Radius Inequalities Involving Commutators of G1 Operators, Complex Anal. Oper. Theory 13 (4), 1557-1567, 2019.
  • [5] M. Bakherad and M.S. Moslehian, Reverses and variations of Heinz inequality, Linear Multilinear Algebra 63 (10), 1972-1980, 2015.
  • [6] R. Bhatia and Ch. Davis, More matrix forms of the arithmetic-geometric mean inequality, SIAM J. Matrix Anal. Appl. 14 (1), 132-136, 1993.
  • [7] M. Erfanian Omidvar, M.S. Moslehian and A. Niknam, Some numerical radius inequalities for Hilbert space operators, Involve 2 (4), 469-476, 2009.
  • [8] J. Fujii, M. Fujii, Y. Seo and H. Zuo, Recent developments of matrix versions of the arithmetic-geometric mean inequality. Ann. Funct. Anal. 7 (1), 102-117, 2016.
  • [9] M. Fujii, J. Mićić Hot, J. Pečarić and Y. Seo, Recent developments of Mond-Pečarić method in operator inequalities. Inequalities for bounded selfadjoint operators on a Hilbert space. II., Monographs in Inequalities 4. Zagreb: Element, 2012.
  • [10] M. Fujii, Y. Seo and H. Zuo, Zhan’s inequality on A-G mean inequalities. Linear Algebra Appl. 470, 241-251, 2015.
  • [11] K.E. Gustafson and D.K.M. Rao, Numerical Range, The Field of Values of Linear Operators and Matrices, Springer, New York, 1997.
  • [12] O. Hirzallah, F. Kittaneh and Kh. Shebrawi, Numerical radius inequalities for certain 2 × 2 operator matrices, Integral Equations Operator Theory 71 (1), 129-147, 2011.
  • [13] M.K. Kwong, Some results on matrix monotone functions, Linear Algebra Appl. 118, 129-153, 1989.
  • [14] H. Najafi, Some results on Kwong functions and related inequalities, Linear Algebra Appl. 439 (9), 2634-2641, 2013.
  • [15] G. Ramesh, On the numerical radius of a quaternionic normal operator, 2 (1), 78-86, 2017.
  • [16] T. Yamazaki, On upper and lower bounds of the numerical radius and an equality condition, Studia Math. 178, 83-89, 2007.
  • [17] X. Zhan, Inequalities for unitarily invariant norms, SIAM J. Matrix Anal. Appl. 20 (2), 466-470, 1999.
  • [18] F. Zhang, Matrix Theory, Second edition, Springer, New York, 2011.