Some identities involving multiplicative semiderivations on ideals

Let $R$ be a prime ring and $I$ be a nonzero ideal of $R.$ A mapping $d:R\rightarrow R$ is called a multiplicative semiderivation if there exists a function $g:R\rightarrow R$ such that (i) $d(xy)=d(x)g(y)+xd(y)=d(x)y+g(x)d(y)$ and (ii) $d(g(x))=g(d(x))$ hold for all $x,y\in R.$ In the present paper, we shall prove that $[x,d(x)]=0,$ for all $x\in I$ if any of the followings holds: i) $d(xy)\pm xy\in Z,$ ii) $d(xy)\pm yx\in Z,$ iii) $d(x)d(y)\pm xy\in Z,$ iv) $d(xy)\pm d(x)d(y)\in Z,$ viii) $d(xy)\pm d(y)d(x)\in Z,$ for all $x,y\in I.$ Also, we show that $R$ must be commutative if $d(I)\subseteq Z.$

___

  • [1] O. Ağırtıcı and Ö. Gölbaşı, Multiplicative semiderivations on ideals of semiprime rings, Palest. J. Math. 9 (2), 792-800, 2020.
  • [2] M. Ashraf and N. Rehman, On derivations and commutativity in prime rings, East- West J. Math. 3 (1), 87–91, 2001.
  • [3] H.E. Bell and L.C. Kappe, Rings in which derivations satisfy certain algebraic conditions, Acta Math. Hungar. 53, 339-346, 1989.
  • [4] J. Bergen, Derivations in prime rings, Canad. Math. Bull. 26, 267-270, 1983.
  • [5] M. Bresar, Centralizing mappings and derivations in prime rings, J. Algebra 156, 385-394, 1983.
  • [6] J.C. Chang, On semiderivations of prime rings, Chinese J. Math. 12, 255-262, 1984.
  • [7] M.N. Daif, When is a multiplicative derivation additive, Int. J. Math. Math. Sci. 14 (3), 615-618, 1991.
  • [8] B. Dhara and S. Ali, On multiplicative (generalized) derivation in prime and semiprime rings, Aequationes Math. 86, 65-79, 2013.
  • [9] H. Goldman and P. Semrl, Multiplicative derivations on C(X), Monatsh Math. 121 (3), 189-197, 1969.
  • [10] W.S. Martindale III, When are multiplicative maps additive, Proc. Amer. Math. Soc. 21, 695-698, 1969.
  • [11] E.C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8, 1093-1100, 1957.