Numerical modelling of study the effect of the entrainment velocity, the number of Nusselt and the thickness of the non-convective zone on the stability of the pond solar
In this paper, the effect of the entrainment velocity, the Nusselt number, and the thickness of the salinity gradient zone $(NCZ)$ on the stability of the solar pond are studied. The modelling equations of thermal energy and mass transfer in a salt gradient solar pond are discretized by finite difference methods in the transient regime. A new border condition applicable near the equilibrium of interface between the $(NCZ)$ and the $(LCZ)$ region is proposed. We take account of the effects of both turbulent entrainment and diffusion on the growth or erosion of the gradient zone $(NCZ)$. The obtained numerical results show an additional condition of solar pond's stability which links between the salinity gradient $\left( \Delta C\right) \ $ and the temperature gradient $\left( \Delta T\right)$ in the $(NCZ)$ region.
___
- [1] Z. Ayati and J. Biazar, On the convergence of the homotopy perturbation method, J.
Egyptian Math. Soc. 23 (2), 424–428, 2015.
- [2] P.K. Bansal and N.D. Kaushika, Salt gradient stabilized solar pond collector, Energy
Convers. Manag. 21, 81–95, 1981.
- [3] R.S. Beniwal and R. Singh, Calculation of thermal efficiency of salt-gradient solar
ponds, Heat Recov. Syst. CHP, 7 (6), 497–516, 1987.
- [4] T.L. Bergman, F.P. Incropera and R. Viskanta. A multi-layer model for mixing layer
development in a double diffusive thermohaline system heated from below, Int. J. Heat
Mass Transf. 25, 1411–1418, 1982.
- [5] F. Bernad, S. Casas, O. Gibert, A. Akbarzadeh, J.L. Cortina and C. Valderrama,
Salinity gradient solar pond: Validation and simulation model, Sol. Energy 98, 366–
374, 2013.
- [6] R. Boudhiaf, A.B. Moussa and M. Baccar, A two-dimensional numerical study of
hydrodynamic, heat and mass transfer and stability in a salt gradient solar pond,
Energies 5 (12), 3986-4007, 2012.
- [7] G. Boyle, Renewable Energy: Power for a Sustainable Future, 2nd ed., Oxford, UK:
Oxford University Press, 2004.
- [8] M.M. Dah, Etude numerique et experimentale de la stabilité des etangs solaires a
gradient de sel, PhD. Thesis, University of Tunisia El Manar, 2010.
- [9] A. Defant, Physical Oceanography, Pergamon Press, Oxford, UK, 1961.
- [10] D. Gonzalez, J. Amigo, S. Lorente, A. Bejan and F.Suarez, Constructal design of salt
gradient solar pond fields, Int. J. Energy Res. 10, 1428–1446, 2016.
- [11] A. Guesmia and N. Daili, Finite volume approximation of stationary Burgers equation,
J. Anal. Appl. 6 (3), 179–193, 2008.
- [12] A. Guesmia and N. Daili, Approche numérique de la solution entropique de l’équation
d’évolution de Bürgers par la méthode des lignes, Gen. Math. Sci. 17 (2), 99–111,
2009.
- [13] A. Guesmia and N. Daili, Numerical approximation of fractional Burgers equation,
Commun. Math. Appl. 1 (3), 1–16, 2010.
- [14] J.R. Hull, C.E. Nielsen and P. Golding, Salinity-gradient solar ponds, CRC Press,
Boca Raton, FL, 1989.
- [15] P.D. Lax and R.D. Richtmyer, Survey of the stability of linear finite difference equations,
Comm. Pure Appl. Math. 9, 267–293, 1956.
- [16] M.M. Ould Dah, M.Ouni, A. Guizani and A. Belghith, The influence of the heat
extraction mode on the performance and stability of a mini solar pond, Appl. Energy
87, 3005–3010, 2010.
- [17] A. Rabl and C.E. Nielson, Solar ponds for space heating, Sol. Energy 17, 1-12, 1975.
- [18] K.R. Sreenivas, J.H. Arakeri and J. Srinivasan, Modeling of the dynamics of the mixed
layer in solar ponds, Sol. Energy 54 (3), 193–202, 1995.
- [19] M. Turkyilmazoglu, An effective approach for approximate analytical solutions of the
damped Duffing equation, Phys. Scr. 86, 015301, 2012.
- [20] M. Turkyilmazoglu, Is homotopy perturbation method the traditional Taylor series
expansion, Hacet. J. Math. Stat. 44 (3), 651–657, 2015.
- [21] M. Turkyilmazoglu, Convergence accelerating in the homotopy analysis method: a
new approach, Adv. Appl. Math. Mech. 10 (4), 925–947, 2018.
- [22] M. Turkyilmazoglu, A simple algorithm for high order Newton iteration formulae and
some new variants, Hacet. J. Math. Stat. 49 (1), 425–438, 2020.
- [23] Y.F. Wang and A.A. Akbarzadeh, A parametric study on solar ponds, Sol. Energy
30, 555–562, 1983.
- [24] H. Wang, M. Xie and W. Sun, Nonlinear dynamic behavior of non-convective zone in
salt gradient solar pond, Sol. Energy 85, 1745–1757, 2011.
- [25] H. Xu, Laboratory studies on dynamical process in salinity gradient solar pond, Ph.D.
Thesis, Ohio State University, 1990.
- [26] F. Zangrando and H.J.S. Femando, A predictive model for migration of doublediffusive
interfaces, Sol. Energy 113, 59–65, 1991.