Connections on the rational Korselt set of $pq$

For a positive integer $N$ and $\mathbb{A}$, a subset of $\mathbb{Q}$, let $\mathbb{A}$-$\mathcal{KS}(N)$ denote the set of $\alpha=\dfrac{\alpha_{1}}{\alpha_{2}}\in \mathbb{A\setminus} \{0,N\}$, where $\alpha_{2}r-\alpha_{1}$ divides $\alpha_{2}N-\alpha_{1}$ for every prime divisor $r$ of $N$. The set $\mathbb{A}$-$\mathcal{KS}(N)$ is called the set of $N$-Korselt bases in $\mathbb{A}$. Let $p, q$ be two distinct prime numbers. In this paper, we prove that each $pq$-Korselt base in $\mathbb{Z\setminus}\{ q+p-1\}$ generates at least one other in $\mathbb{Q}$-$\mathcal{KS}(pq)$. More precisely, we prove that if $(\mathbb{Q\setminus}\mathbb{Z})$-$\mathcal{KS}(pq)=\emptyset$, then $\mathbb{Z}$-$\mathcal{KS}(pq)=\{ q+p-1\}$.

___

  • [1] K. Bouallegue, O. Echi and R. Pinch, Korselt Numbers and Sets, Int. J. Number Theory, 6, 257–269, 2010.
  • [2] R.D. Carmichael, On composite numbers $P$ which satisfy the Fermat congruence $a^{P-1} \equiv 1 \pmod P$, Amer. Math. Monthly, 19, 22–27, 1912.
  • [3] O. Echi, Williams Numbers, C. R. Math. Acad. Sci. Soc. R. Can. 29, 41–47, 2007.
  • [4] O. Echi and N. Ghanmi, The Korselt Set of pq, Int. J. Number Theory, 8 (2), 299–309, 2012.
  • [5] N. Ghanmi, $\mathbb{Q}$-Korselt Numbers, Turkish J. Math. 42, 2752–2762, 2018.
  • [6] N. Ghanmi, Rationel Korselt Bases of Prime Powers, Stu. Sci. Math. Hungarica, 56 (4), 388-403 2019.
  • [7] N. Ghanmi, The $\mathbb{Q}$-Korselt Set of $pq$, Period. Math. Hungarica, 81, 174–193, 2020.
  • [8] N.Ghanmi and I. Al-Rassasi, On Williams Numbers With Three Prime Factors, Mis- souri J. Math. Sci. 25 (2), 134–152, 2013.
  • [9] N. Ghanmi, O. Echi and I. Al-Rassasi, The Korselt Set of a Squarefree Composite Number, C. R. Math. Rep. Acad. Sci. Canada, 35 (1), 1–15, 2013.
  • [10] A. Korselt, Problème chinois, Interméd. Math. 6, 142–143, 1899.