Ticari Bir Lityum-İyon Pilinin Batarya Dinamikleri Üzerinde Şarj Koşullarının Etkisi

Ticari bir 2032 lityum-iyon para pilinin batarya dinamikleri üzerinde şarj durumu, şarj akımı ve akım düşüş zamanının etkilerini belirlemek üzere elektrokimyasal empedans spektroskopisi ölçümleri gerçekleştirildi. Empedans cevabı Taguchi tasarımı kullanılarak sistematik bir şekilde araştırıldı ve tartışıldı. Sonuçlar şarj durumunun katı elektrolit ara fazı oluşum direnci ve katodik şarj aktarım direnci üzerinde istatistiksel olarak anlamlı bir etkiye sahip olduğunu gösterdi. Taguchi tasarımının eşdeğer devre modeli ile elde edilen batarya dinamiklerinin analiz edilmesinde önemli bir araç olduğu gösterildi. Taguchi tasarımı gerçek yaşamda lityum-iyon bataryalarının gürbüz bir tasarımı için bir olanak sağlamıştır.

Influence of Charge Conditions on Battery Dynamics of A Commercial Lithium-Ion Cell

Electrochemical impedance spectroscopy measurements were performed to determine the effect of the state-of-charge,charge current, and current-drop time on battery dynamics of a commercial 2032 lithium-ion coin cell. The impedanceresponse was systematically investigated and discussed by using the Taguchi design. The results showed that the state-ofchargehad a statistically significant effect on both the resistance for solid electrolyte interphase formation and cathodiccharge transfer resistance. It was showed that the Taguchi design is a valuable tool for analyzing battery dynamics obtainedthrough the equivalent circuit model. The Taguchi design opened the door for a robust design of lithium-ion batteries inreal life.

___

  • 1. U. Moralı, S. Erol, 18650 lityum-iyon ve 6HR61 nikelmetal hidrit tekrar şarj edilebilir pillerinin elektrokimyasal empedans analizi, J. Fac. Eng. Archit. Gaz., 35 (2020) 297-310.
  • 2. H. Wang, S. Frisco, E. Gottlieb, R. Yuan, J.F. Whitacre, Capacity degradation in commercial Li-ion cells: The effects of charge protocol and temperature, J. Power Sources, 426 (2019) 67-73.
  • 3. R. Gopalakrishnan, Y. Li, J. Smekens, A. Barhoum, G. Van Assche, N. Omar, J. Van Mierlo, Electrochemical impedance spectroscopy characterization and parameterization of lithium nickel manganese cobalt oxide pouch cells: dependency analysis of temperature and state of charge, Ionics, 25 (2018) 111-123.
  • 4. T. Amietszajew, E. McTurk, J. Fleming, R. Bhagat, Understanding the limits of rapid charging using instrumented commercial 18650 high-energy Li-ion cells, Electrochim. Acta, 263 (2018) 346-352.
  • 5. S. Erol, M.E. Orazem, R.P. Muller, Influence of overcharge and over-discharge on the impedance response of LiCoO2|C batteries, J. Power Sources, 270 (2014) 92-100.
  • 6. S. Buteau, D. Dahn, J. Dahn, Explicit conversion between different equivalent circuit models for electrochemical impedance analysis of lithium-ion cells, J. Electrochem. Soc., 165 (2018) A228-A234.
  • 7. C. Yu, S. Ganapathy, E. Eck, H. Wang, S. Basak, Z. Li, M. Wagemaker, Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyteelectrode interface, Nat. Commun., 8 (2017) 1086.
  • 8. J. Xu, X. Wang, N. Yuan, J. Ding, S. Qin, J.M. Razal, X. Wang, S. Ge, Y. Gogotsi, Extending the low temperature operational limit of Li-ion battery to− 80°C, Energy Stor. Mater., 23 (2019) 383-389.
  • 9. A. Schmidt, A. Smith, H. Ehrenberg, Power capability and cyclic aging of commercial, high power lithium ion battery cells with respect to different cell designs, J. Power Sources, 425 (2019) 27-38.
  • 10. U. Moralı, H. Demiral, S. Şensöz, Optimization of activated carbon production from sunflower seed extracted meal: Taguchi design of experiment approach and analysis of variance, J. Clean. Prod., 189 (2018) 602-611.
  • 11. S. Erol, M.E. Orazem, The influence of anomalous diffusion on the impedance response of LiCoO2|C batteries, J. Power Sources, 293 (2015) 57-64.
  • 12. A. Barai, K. Uddin, M. Dubarry, L. Somerville, A. McGordon, P. Jennings, I. Bloom, A comparison of methodologies for the non-invasive characterisation of commercial Li-ion cells, Prog. Energ. Combust., 72 (2019) 1-31.
  • 13. D. Juarez-Robles, C.F. Chen, Y. Barsukov, P.P. Mukherjee, Impedance evolution characteristics in lithium-ion batteries, J. Electrochem. Soc., 16 (2017) A837-A847.
  • 14. R. Tatara, P. Karayaylali, Y. Yu, Y. Zhang, L. Giordano, F. Maglia, R. Jung, J.P. Schmidt, I. Lund, Y. Shao-Horn, The effect of electrode-electrolyte interface on the electrochemical impedance spectra for positive electrode in Li-ion battery, J. Electrochem. Soc., 166 (2019) A5090-A5098.
  • 15. A. Yürüm, Sunflower Stalk Based Activated Carbon for Supercapacitors, Hacettepe J. Biol. Chem., 47 (2019) 235- 247.