Synthesis and characterization of the poly(ethylene glycol) grafted unsaturated microbial polyesters

Synthesis and characterization of the poly(ethylene glycol) grafted unsaturated microbial polyesters

Pseudomonas oleovorans was grown with either 10-undecenoic acid alone or the equimolar mixture of octanoic acid and 10-undecenoic acid to obtain unsaturated poly(3- hydroxy alkanoates) (PHA)s; poly(3-hydroxy-10-undecenoate) (PHU) and poly(3-hydroxyoctanoate- co-3-hydroxy-10-undecenoate) (PHOU), respectively. The addition of bromine to olefinic double bond, by reacting the unsaturated PHA with bromine in homogeneous solution in dark, was readily carried out. The brominated PHA was reacted with polyethylene glycol (PEG) in the presence of a base to obtain PHA-g-PEG graft copolymers. The polymers were characterized by $^ 1H$ NMR and FTIR spectroscopy, gel permeation chromatography (GPC), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA).

___

  • 1. Sudesh, K, Abe, H, Doi, Y., Synthesis, structure and properties of polyhydroxyalkanoates: Biological polyesters. Prog. Polym. Sci., 25, 1503, 2000.
  • 2. Steinbüchel A., Valentin H.E., Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol. Lett., 128, 219, 1995.
  • 3. Lenz R.W., Marchessault R.H., Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules, 6, 1, 2005.
  • 4. Steinbüchel A., Füchtenbusch B., Gorenflo V., Hein S., Jossek R., Langenbach S., Rehm B.H.A., Biosynthesis of polyesters in bacteria and recombinant organisms. Polym. Degradation Stab., 59, 177, 1998.
  • 5. Williams S.F., Martin D.P., Horowitz D.M., Peoples O.P., PHA applications: addressing the price performance issue: I. Tissue engineering. Int. J. Biol. Macromol., 25, 111, 1999.
  • 6. Zinn, M., Witholt, B., Egli, T., Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv. Drug Del. Rev., 53, 5, 2001.
  • 7. Fritzsche, K., Lenz, R., Fuller, R., An unusual bacterial polyester with a phenyl pendant group. Macromol. Chem. Phys., 191, 1957, 1990.
  • 8. Kim, Y., Lenz, R., Fuller, R., Poly(β-hydroxyalkanoate) copolymers containing brominated repeating units produced by Pseudomonas oleovorans. Macromolecules 25, 1852, 1992.
  • 9. Hazer, B., Lenz, R., Fuller, R., Production of some new biopolyesters containing aromatic substituents by either Pseudomonas oleovorans or Pseudomonas putida. Polymer, 37, 5951, 1996.
  • 10. Curley, J.M., Hazer, B., Lenz, R.W., Fuller, R.C., Production of poly(3-hydroxyalkanoates) containing aromatic substituents by Pseudomonas oleovorans. Macromolecules, 29, 1762, 1996.
  • 11. Scholz, C., Fuller, R., Lenz, R., Production of poly(β- hydroxyalkanoates) with β-substituents containing terminal ester groups by Pseudomonas oleovorans. Macromol. Chem. Phys., 195, 1405, 1994.
  • 12. Shah, D., Tran, M., Berger, P., Aggarwal, P., Asrar, J., Madden, L., Anderson, A., Synthesis and properties of hydroxy-terminated poly(hydroxyalkanoate)s. Macromolecules, 33, 2875, 2000.
  • 13. Hazer, B., Lenz, R., Fuller, R., Biosynthesis of methyl branched poly(β-hydroxy alkanoate)s with Pseudomonas oleovorans. Macromolecules, 27, 45, 1994.
  • 14. Hazer, B., Steinbüchel, A., Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications. Appl. Microbiol. Biotechnol., 74, 1, 2007.
  • 15. Arkin, A.H., Hazer, B., Borcakli, M., Chlorination of poly-3- hydroxy alkanoates containing unsaturated side chains. Macromolecules, 33, 3219, 2000.
  • 16. Kim, H.W., Chung, C.W., Kim, S.S., Kim, Y.B., Rhee, Y.H., Preparation and cell compatibility of acrylamid-grafted poly(3-hydroxyoctanoate). Int. J. Biol. Macromol., 30,129, 2002.
  • 17. Hazer, B., Poly(β-hydroxynonanoate) and polystyrene or poly (methylmethacrylate) graft copolymers : microstructure characteristics and mechanical and thermal behavior. Macromol. Chem. Phys., 197, 431, 1996.
  • 18. Eroğlu, M.S., Çaykara, T., Hazer, B., Gamma rays induced grafting of methyl methacrylate onto poly(β-hydroxynonanoate), Polym, Bull,, 41, 53, 1998.
  • 19. Kim, H.W., Chung, M.G., Kim, Y.B., Rhee, Y.H., Graft copolymerization of glycerol1,3-diglycerolate diacrylate onto poly(3-hydroxyoctanoate) to improve physical properties and biocompatibility. Int. J. Biol. Macromol., 43, 307, 2008.
  • 20. Bear, M., Leboucher-Durand, M., Langlois, V., Lenz, R., Goodwin, S., Guerin, P., Bacterial poly-3-hydroxyalkenoates with epoxy groups in the side chains. React. Functl. Polym., 34, 65, 1997.
  • 21. Nguyen, S., Graft copolymers containing poly(3-hydroxyalkanoates)- A review on their synthesis, properties, and applications. Canadian J. Chem., 86, 570, 2008.
  • 22. (a) Hazer, B., Torul, O., Borcakli, M., Lenz, R.W., Fuller, R.C., Goodwin, S., Bacterial production of polyesters from free fatty acids obtained from natural oils by Pseudomonas oleovorans. J. Environ. Polym. Degradation, 6, 109, 1998. (b) Hazer, D.B., Hazer, B., Kaymaz, F., Synthesis of microbial elastomers based on soybean oily acids. Biocompatibility studies. Biomed. Mater., 4, 035011, 2009.
  • 23. Ashby, R.D., Foglia, T.A., Poly(hydroxyalkanoate) biosynthesis from trigliceride substrates. Appl. Microbiol. Biotechnol., 49, 431, 1998.
  • 24. Eggink, G., van der Wal, H., Huijberts, G.N.M., de Waard, P., Oleic acid as substrate for poly-3-hydroxyalkanoate formation in Alcaligenes eutrophus and Pseudomonas putida. Ind. Crop. Product., 1, 157, 1993.
  • 25. Gagnon, K.D., Lenz, R.W., Farris, R.J., Fuller, R.C., Chemical modification of bacterial elastomers: 1. Peroxide crosslinking. Polymer, 35, 4358, 1994.
  • 26. Dufresne, A., Reche, L., Marchessault, R.H., Lacroix, M., Gamma-ray crosslinking of poly(hydroxyoctanoate-coundecenoate). Int. J. Biol. Macromol., 29, 73, 2001.
  • 27. Hany, R., Böhlen, C., Geiger, T., Hartmann, R., Kawada, J., Schimid, M., Zinn, M., Marchessault, R.H., Chemical synthesis of crystalline comb polymers from olefinic medium-chain-length poly[3-hydroxyalkanoates. Macromolecules, 37, 385, 2004.
  • 28. Park, W.H., Lenz, R.W., Goodwin, S., Epoxidation of bacterial polyesters with unsaturated side chains. I. Production and epoxidation of polyesters from 10- undecenoicacid. Macromolecules, 31, 1480, 1998.
  • 29. Eroğlu, M.S., Hazer, B., Öztürk, T., Çaykara, T., Hydroxylation of pendant vinyl groups of poly(3-hydroxy undec-10-enoate) in high yield. J. Appl. Polym. Sci., 97, 2132, 2005.
  • 30. Lee, M.Y., Park, W.H., Lenz, R.W., Hydrophilic bacterial polyesters modified with pendant hydroxyl groups. Polymer, 41, 1703, 2000.
  • 31. Konig, G.J.M., van Bilsen, H.M.M., Lemstra, P.J., Hazenberg, W., Witholt, B., Preusting, H., van der Galien, J.G., Schirmer, A., Jendrossek, D., A biodegradable rubber by crosslinking poly(hydroxyalkanoate) from Pseudomonas oleovorans. Polymer, 35, 2090, 1994.
  • 32. Kurth, N., Renard, E., Brachet, F., Robic, D., Guerin, Ph., Bourbouze, R., Poly(3-hydroxyoctanoate) containing pendant carboxylic groups for the preparation of nanoparticles aimed at drug transport and release. Polymer, 43, 1095, 2002.
  • 33. Stigers, D.J., Tew, G.N., Poly(3-hydroxyalkanoate)s functionalized with carboxylic acid groups in the side chain. Biomacromolecules, 4, 193, 2003.
  • 34. Sparks, J., Scholz, C., Synthesis and characterization of a cationic poly(β-hydroxyalkanoate). Biomacromolecules, 9, 2091, 2008.
  • 35. Förster, S., Antonietti, M., Amphiphilic block copolymers in structure-controlled nanomaterial hybrids. Adv. Mater., 10, 195, 1999.
  • 36. Kukula, H., Schlaad, H., Antonietti, M., Förster, S., The formation of polymer vesicles or “Peptosomes” by polybutadiene-block-poly(L-glutamate)s in dilute aqueous solution, JACS, 124, 1658, 2002.
  • 37. Harris, J.M., Introduction to Biotechnical and Biomedical Applications of Poly(ethylene glycol). In poly(ethylene glycol) chemistry: Biotechnical and Biomedical Applications, Harris, J.M. Ed; Plenum Press: New York, pp. 1-14, 1992.
  • 38. Kim, H.W., Chung, C.W., Rhee, Y.H., UV-induced graft copolymerization of monoacrylate-poly(ethylene glycol) onto poly(3-hydroxyoctanoate) to reduce protein adsorption and platelet adhesion, Int. J. Biol. Macromol., 35, 47, 2005.
  • 39. Chung, C.W., Kim, H.W., Kim, Y.B., Rhee, Y.H., Poly(ethylene glycol)-grafted poly(3-hydroxyundecenoate) networks for enhanced blood compatibility, Int. J. Biol. Macromol., 32, 17, 2003.
  • 40. Hazer, B., Lenz, R.W., Çakmaklı, B., Borcaklı, M., Koçer, H., Preparation of poly(ethylene glycol) grafted poly(3- hydroxyalkanoate)s. Macromol. Chem. Phys., 200, 1903, 1999.
  • 41. Erduranlı, H., Hazer, B., Borcaklı, M., Post polymerization of saturated and unsaturated poly(3-hydroxy alkanoate)s. Macromol. Symp., 269, 161, 2008.
  • 42. (a) Grayson, S.M., Frechet, J.M.J., Convergent dendrons and dendrimers: from synthesis to applications, Chem. Rev., 101, 3819, 2001; (b) Hawker, C.J.; Frechet, J.M.J., Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules, JACS, 112, 7638, 1990.
  • 43. Macit, H., Hazer, B., Arslan, H., Noda, I., The Synthesis of PHA-g-(PTHF-b-PMMA) multiblock/graft copolymers by combination of cationic and radical polymerization. J. Appl. Polym. Sci., 111, 2308, 2009.