Selective preconcentration of $Fe^ {3+}$ using ion-imprinted thermosensitive particles

Selective preconcentration of $Fe^ {3+}$ using ion-imprinted thermosensitive particles

Molecular imprinting is a form of template polymerization which has been used to produce artificial binding sites in porous polymer particles that exhibit selective rebinding of the imprint or template molecules used in the fabrication. In this study, thermosensitive ionimprinted polymers (TIIP) were prepared for selective preconcentration of $Fe^ {3+}$ ions. Langmuir and Freundlich adsorption models for TIIP were applied to describe the experimental isotherm and isotherm constants. Equilibrium data fit very well to the Langmuir model in the entire concentration range (5-40 mg/L). Furthermore, the selective adsorption of $Fe^ {3+}$ ions was confirmed by comparing the adsorption amount of other metal ions, $Al^ {3+}, Zn^ {2+}, Co^ {2+}, Cu^ {2+} and Mn^ {2+.}$

___

  • 1. Bartsch, R.A., Maeda, M. Eds. Molecular and ionic recognition with imprinted polymers. Washington DC: ACS Symposium Series 703; American Chemical Society, 1998.
  • 2. Wulff, G., Molecular imprinting in crosslinked materials with the aid of molecular templates - a way towards artificial antibodies. Angew. Chem. Int. Ed. Engl. 34, 1812, 1995.
  • 3. Shea, K.J., Molecular imprinting of synthetic network polymers: The de novo synthesis of macromolecular binding and catalytic sites. Trends Polym. Sci., 2, 166, 1994.
  • 4. Mayes, A.G., Mosbach, K., Molecularly imprinted polymers: useful materials for analytical chemistry. Trends Anal. Chem., 16, 321, 1997.
  • 5. Sellergen, B., Noncovalent molecular imprinting: antibodylike molecular recognition in polymeric network materials. Trends Anal. Chem., 16, 310, 1997.
  • 6. Steinke, J., Sherrington, D., Dunkin, I., Imprinting of synthetic polymers using molecular templates. Adv. Polym. Sci.,123, 81, 1995.
  • 7. Langer, R., Peppas, N.A., Advances in Biomaterials, Drug Delivery, and Bionanotechnology. AIChE Journal. 49, 2990, 2003.
  • 8. Piletsky, S.A., Alcock, S., Turner, A.P.F., Molecular imprinting: at the edge of the third millennium. Trends Biotechnol., 19, 9, 2001.
  • 9. Wizeman, W., Kofinas, P., Molecularly imprinted polymer hydrogels displaying isomerically resolved glucose binding, Biomaterials, 22, 1485, 2001.
  • 10. Wulff, G., Molecular imprinting in cross-linked materials with the aid of molecular templates - A way towards artificial antibodies. Angew. Chem. Int. Ed. Engl., 34, 1812, 1995.
  • 11. Say, R., Birlik, E., Ersöz, A., Yılmaz, F., Gedikbey, T., Denizli, A., Preconcentration of copper on ion-selective imprinted polymer microbeads, Anal. Chim Acta, 480, 251, 2003.
  • 12. Birlik, E., Ersöz, A., Denizli, A., Say, R., Preconcentration of copper using double-imprinted polymer via solid phase extraction. Anal. Chim. Acta, 565, 145, 2006.
  • 13. Mosbach, K., Ramstrom, O., The emerging technique of molecular imprinting and its future impact on biotechnology. Biotechnology, 14, 163, 1996.
  • 14. Sellergen, B., Noncovalent molecular imprinting: antibodylike molecular recognition in polymeric network materials, Trends Anal. Chem., 16, 310, 1997.
  • 15. Withcombe, M.J., Rodriquez, M.E., Villar, P., Vulfson, E.N., A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting: synthesis and characterization of polymeric receptors for cholesterol, J. Am. Chem. Soc., 117, 7105, 1995.
  • 16. Kirsch, N.C., Alexander., Lubke M., Withcombe, M.J., Vulfson, E.N., Enhancement of selectivity of imprinted polymers via post-imprinting modification of recognition sites. Polymer, 41, 5583, 2000.
  • 17. Ansell, R.J., Mosbach, K., Molecularly imprinted polymers: new tools for biomedical science. Pharma. News, 3, 16, 1996.
  • 18. Withcombe, M.J., Vulfson, E.N., Imprinted polymers, Adv. Mater., 13, 467, 2001.
  • 19. Karabörk, M., Ersöz, A., Denizli, A., Say, R., Polymer−clay nanocomposite iron traps based on intersurface ionimprinting, Ind. Eng. Chem. Res., 47, 2258, 2008.
  • 20. Mosbach, K., Haupt, K., Some new developments and challenges in non-covalent molecular imprinting technology, J. Mol. Recognit., 11, 62, 1998.
  • 21. Oya, T., Enoki, T., Grosberg, A.Y., Masamune S., Sakiyama, T., Takeoka, Y., Tanaka, K., Wang, G.Q., Yılmaz Y., Feld, M.S., Dasari, R., Tanak, T., Reversible molecular adsorption based on multiple-point interaction by shrinkable gels. Science, 286, 1543, 1999.
  • 22. Katono, H., Sanui, K., Ogata, N., Okano, T., Sakurai, Y., Drug release off behavior and deswelling kinetics of thermo-responsive IPNs composed of poly(acrylamide-cobutyl methacrylate) and poly(acrylic acid). Polym. J., 23, 1179, 1991.
  • 23. Ito, S., Phase transition of aqueous solution of poly(nalkylacrylamide) derivatives aa effects of side chain structure aa, Kobunshi Ronbunshu, 46(7), 437, 1989.
  • 24. Tokuyama, H., Kanazawa, R., Sakohara, S., Equilibrium and kinetics for temperature swing adsorption of a target metal on molecular imprinted thermosensitive gel adsorbents, Sep. Purif. Tech., 44, 152, 2005.
  • 25. Ito, K., Chuang, J., Alvarez-Lorenzo, C., Watanabe, T., Ando, N., Grosberg, A.Y., Multiple point adsorption in a heteropolymer gel and the Tanaka approach to imprinting: Experiment and theory, Prog. Polym.Sci., 28, 1489, 2003.
  • 26. Güney, O., Multiple-point adsorption of terbium ions by lead ion templated thermosensitive gel: elucidating recognition of conformation in gel by terbium probe, J. Mol. Recognit., 16, 67, 2003.
  • 27. Morris, G.E., Vincent, B., Snowden, M.J., Adsorption of lead ions onto n-isopropylacrylamide and acrylic acid copolymer microgels, J. Colloid Interf. Sci., 190, 198, 1997.
  • 28. Uğuzdoğan, E., Kayı, H., Denkbaş, E.B., Patır, S., Tuncel, A., Stimuli-responsive properties of aminophenylboronic acid carrying thermosensitive copolymers. Polym. Int., 52, 649, 2003.
  • 29. Tokuyama, H., Yanagawa, K., Sakohara, S., Temperature swing adsorption of heavy metals on novel phosphate-type adsorbents using thermosensitive gels and/or polymers, Sep. Purif. Technol., 50, 8, 2006.
  • 30. Zhang, J., Peppas N.A., Synthesis and characterization of pH- and temperature-sensitive poly(methacrylic acid)/ poly(n-isopropylacrylamide) interpenetrating polymeric networks. Macromolecules, 33, 102, 2000.
  • 31. Say, R., Creation of recognition sites for organophosphate esters based on charge transfer and ligand exchange imprinting methods, Anal Chim. Acta, 579(1, 2), 74, 2006.
  • 32. Kuchen, W., Schram, J., Metal-ion-selective exchange resins by matrix imprint with methacrylates, Angew. Chem. Int. Ed. Engl., 27, 1695, 1988.
  • 33. Dai, S., Burleigh, M.C., Shin, Y., Morrdw, C.C., Barnes, C.E., Imprint coating: A novel synthesis of selective functionalized ordered mesoporous sorbents, Angew. Chem. Int. Ed., 38(9), 1235, 1999.
  • 34. Kanazawa, R., Yoshida, T., Gotoh, T., Sakohara, S., Preparation of molecular imprinted thermosensitive gel adsorbents and adsorption/desorption properties of heavy metal ions by temperature swing. J. Chem. Eng. Jpn., 37, 59, 2004.
  • 35. Kesenci, K., Say, R., Denizli, A., Removal of heavy metal ions from water by using poly(ethyleneglycol dimethacrylate- co-acrylamide) beads, Eur. Polym. J., 38(7), 1443, 2002.
  • 36. Denizli, A., Garipcan, B., Karabakan, A., Say, R., Emir, S., Patır, S., Metal-complexing ligand methacryloylamidocysteine containing polymer beads for Cd(II) removal, Sep. Purif. Technol., 30(1), 3, 2003.
  • 37. Denizli, A., Salih, B., Pişkin, E., New sorbents for removal of heavy metal ions: diamine-glow-discharge treated polyhydroxyethyl methacrylate microspheres, J. Chromatogr. A, 773(1-2), 169, 1997.
  • 38. Jaganathan, J., Ewing K.J., Aggarwal, I., Determination of iron, cobalt, nickel and copper in a zirconium-based glass by electrothermal atomic absorption spectrometry, J. Anal. Atom. Spectrom., 7, 1287, 1992.
  • 39. Soares, M.E., Bastos, M.L., Ferreira, M.A., Determination of copper, iron, aluminium, lead and cadmium in cork stoppers by electrothermal atomic absorption spectrometry, J. Anal. Atom. Spectrom., 8, 655, 1993.
  • 40. Pourreza, N., Hoveizavi, R., Simultaneous preconcentration of Cu, Fe and Pb as methylthymol blue complexes on naphthalene adsorbent and flame atomic absorption determination, Anal. Chim. Acta, 549, 124, 2005.
  • 41. Satake, M., Nagahiro T., Puri, B.K., Column preconcentration of iron(III) with an ion pair of 1,2- dihydroxybenzene-3,5-disulfonate and benzyldimethyltetradecylammonium ion supported on naphthalene using flame atomic absorption spectrometry, J. Anal. Atom. Spectrom., 7, 183, 1992.