Rapid production of highly interconnected porous scaffolds by spheroidized sugar particles for tissue engineering

Düzensiz gözenek morfolojisi kemik doku mühendisliği için tasarlanan doku iskelelerinde hücre cevabı ve gözenekler arası bağlantılar üzerinde önemli bir etkiye sahiptir. Bu çalışmada, oldukça yüksek gözenek bağlantıları olan doku iskelelerinin üretiminde partikül ekstraksiyonu yöntemi için yeni bir gözenek oluşturucu üretildi. Doku iskelelerinin oluşturulmasında poli-L-laktik asit (PLLA) ve poli-e-kaprolaktondan (PCL) (ağırlıkça ortalama molekül ağırlıkları sırasıyla 220 kDa ve 50 kDa) oluşan bir polimerik karışım kullanıldı. Bir Meker beki yardımıyla alev ile küreselleştirilmiş şeker partikülleri hazırlandı. Bu yöntemle suda oldukça iyi çözünerek uzaklaştırılabilen homojen ve simetrik partiküllerin oluşturulması mümkün oldu. Oluşturulan doku iskelelerinin gözenek morfolojisinin konfokal mikroskop altında incelenmesi için polimerik karışıma üretim sırasında bir pigment ilave edildi. Üretilen doku iskeleleri fiziksel ve biyolojik olarak karakterize edildi. Gözeneklilik ve ortalama gözenek boyu değerleri mikro-bilgisayarlı tomografi (mikro-CT) ile sırasıyla %83 ve 312 mm olarak belirlendi. Hücre kültürü neticesinde konfokal mikroskop ile canlı/cansız kiti uygulamasının sonuçları, doku iskelelerinde yüksek derecede hücre tutunması ve hücre canlılığına işaret etti. Bu yeni yöntemin doku iskelelerinin yapısal kontrolünde doku mühendisliği çalışan gruplar için oldukça yararlı olacağı düşünülmektedir.

Doku mühendisliği için küreselleştirilmiş şeker partikülleriyle yüksek gözenek bağlantılarına sahip doku iskelelerinin hızlı üretimi

Irregular pore morphology has a significant influence on cell response and the control of pore interconnectivity in the scaffolds constructed for tissue engineering of bone. In this study, we explored a new porogen for particulate leaching technique to fabricate highly interconnected porous scaffold with pores in regular shape. A polymeric blend composed of poly-L-lactide (PLLA) and poly-e-caprolactone (PCL) (with average molecular weights of 220 kDa and 50 kDa, respectively) was used for the construction of the scaffold. Spheroidized sugar particles were produced by using a flame treatment with a Meker burner. This method enabled the formation of homogenous and symmetrical particles with high water solubility. A pigment was blended into this polymeric mixture to investigate the morphology by confocal microscopy. The fabricated scaffolds were thoroughly characterised physically and biologically. Porosity and average pore size values were calculated by m-CT as 83% and 312 mm respectively. Live/ dead assay by confocal microscopy demonstrated high cell attachment and cell viability in the scaffolds. This new scaffold fabrication method will be useful for tissue engineering community in the control of scaffold architecture.

___

  • [1] R. Langer, J.P. Vacanti, Tissue engineering, Science, 260 (1993) 920.
  • [2] E.J. Olson, J.D. Kang, F.H. Fu, H.I. Georgescu, G.C. Mason, C.H. Evans, The biochemical and histological effects of artificial ligament wear particles: In vitro and in vivo studies, Am. J. Sports Med., 16 (1998) 558.
  • [3] P.D. Dalton, D. Klee, M. Moller, Electrospinning with dual collection rings, Polymer, 46 (2005) 611.
  • [4] C. Deng, G.Z. Rong, H.Y. Tian, Z.H. Tang, X.S. Chen, X.B. Jing, Synthesis and characterization of poly(ethylene glycol)-b-poly(L-lactide)-b-poly(L-glutamic acid) triblock copolymer, Polymer, 46 (2005) 653.
  • [5] J. Tuominen, J. Kylma, J. Seppala, Chain extending of lactic acid oligomers, Polymer, 43 (2002) 3.
  • [6] L.G. Griffith, Polymeric biomaterials, Acta Mater., 48 (2000) 263.
  • [7] D.W. Hutmacher, Polymeric scaffolds in tissue engineering bone and cartilage, Biomaterials, 21 (2000) 2529.
  • [8] J. Gao, L. Niklason, R. Langer, Surface hydrolysis of poly(glycolic acid) meshes increases the seeding density of vascular smooth muscle cells, J. Biomed. Mater. Res., 42 (1998) 417.
  • [9] M.C. Serrano, R. Pagani, M. Vallet-Regi, J. Pena, A. Ramila, I. Izquierdo, M.T. Portoles, In vitro compatibility assessment of poly(e-caprolactone) films using L929 mouse fibroblasts, Biomaterials, 25 (2004) 5603.
  • [10] A.G. Mikos, A.J. Thorsen, L.A. Czerwonka, Y. Bao, R. Langer, Preparation and characterization of poly(Llactic acid) foams, Polymer, 35 (1994) 1068.
  • [11] L. Moroni, F.R. De Wijn, C.A. Van Blitterswijk, 3D-fiber deposited scaffolds for tissue engineering: Influence of pores geometry and architecture on dynamic mechanical properties, Biomaterials, 27 (2006) 974.
  • [12] J.J. Yoon, S.H. Song, D.S. Lee, T.G. Park, Immobilization of cell adhesive RGD peptide onto the surface of highly porous biodegradable polymer scaffolds fabricated by a gas foaming/salt leaching method, Biomaterials, 25 (2004) 5613.
  • [13] S.H. Oh, S.G. Kang, E.S. Kim, S.H. Cho, J.H. Lee, Fabrication and characterization of hydrophilic poly(lactic-co-glycolic acid)/poly(vinyl alcohol) blend cell scaffold by melt-molding particulate leaching out method, Biomaterials, 24 (2003) 4011.
  • [14] Y.S. Nam, T.G. Park, Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation, J. Biomed. Mater. Res., 47 (1999) 8.
  • [15] D.J. Mooney, D.F. Baldwin, N.P. Suh, J.P. Vacanti, R. Langer, Novel approach to fabricate porous sponges of poly(D,L-lacticco-glycolic acid) without the use of organic solvent, Biomaterials, 17 (1996) 1417.
  • [16] Z. Ma, M. Kotaki, R. Inai, S. Ramakrishna, Potential of nanofiber matrix as tissue-engineering scaffolds, Tissue Eng., 11 (2005) 101.
  • [17] S. Yang, K.F. Leong, Z. Du, C.K. Chua, The design of scaffolds for use in tissue engineering. II. Rapid prototyping techniques, Tissue Eng., 8 (2002) 1.
  • [18] H.M. Aydin, Y. Yang, T. Kohler, A. El Haj, R. Müller, E. Pişkin, Interaction of osteoblasts with macroporous scaffolds made of PLLA/PCL blends modified with collagen and hydroxyapatite, Adv. Eng. Mater., 11 (2009) B83.
  • [19] C. Vaquette, C. Frochot, R. Rahouadj, X. Wang, An innovative method to obtain porous PLLA scaffolds with highly spherical and interconnected pores, J. Biomed. Mater. Res. B. Appl. Biomater., 86 (2008) 9.
  • [20] P. Rüegsegger, B. Koller, R. Müller, Radial cortical and trabecular bone densities of men and women standardized with the EFP, Calcified Tissue Int., 58 (1996) 24.
  • [21] T. Hildebrand, A. Laib, R. Müller, J. Dequeker, P. Rüegsegger, Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus, J. Bone. Miner. Res., 14 (1999) 1167.
  • [22] R.C. Thomson, M.J. Yaszemski, M. Powers, A.G. Mikos, Fabrication of biodegradable polymer scaffolds to engineer trabecular bone, J. Biomater. Sci. Polym. Ed., 7 (1995) 23.
  • [23] P.X. Ma, J.W. Choi, Biodegradable polymer scaffolds with well-defined interconnected spherical pore network, Tissue Eng., 7 (2001) 23.
  • [24] C.W. Patrick, A.G. Mikos, V. McIntire (Eds), Frontiers in Tissue Engineering, Pergamon Press, Oxford, 1998.