PAN-based Pd-doped activated carbon fibers for hydrogen storage: preparation, a new method for chemical activation and characterization of fibers

PAN-based Pd-doped activated carbon fibers for hydrogen storage: preparation, a new method for chemical activation and characterization of fibers

The preparation of ACFs from PAN fibers under various conditions and the method to load Pd on ACFs were described. Chemical activation of the fibers increased the surface areas of the fibers from about 64 $m^ 2$/g to 381 $m^ 2$/g. SEM micrographs of Pd-loaded indicated the diameters of the fibers were in the range of 1.0-10.0 mm. Diameters of metallic Pd particles on the fibers changed between 80 nm and 100 nm. 4.5% (by wt) metallic palladium was deposited on the ACFs. This high percentage of palladium deposited on ACFs is useful for hydrogen storage, since Pd-H system is established under a wide range of pressure and temperature.

___

  • 1. A.C. Dillon, K.E.H. Gilbert, J.L. Alleman, T. Gennett, K.M. Jones, P. A. Parilla, M.J. Heben, in: Proceedings of the 2001 DOE Hydrogen Program Review, NREL/ CP-570-30535, 2001.
  • 2. E.David, J. Mater. Proc. Technol. 162/163 (2005) 169.
  • 3. G.G. Tibbetts, G.P. Meisner, C.H. Olk, Carbon 39 (2001) 292.
  • 4. H.M. Cheng, Q.H. Yang, C. Liu, Carbon 39 (2001) 1447.
  • 5. L. Zhou, Y. Zhou, Y. Sun, Int. J. Hydrogen Energy 29 (3) (2004) 319.
  • 6. R.K. Agarwal, J.S. Noh, J.A. Schwarz, P. Davini, Carbon 25 (1987) 219.
  • 7. J.A. Menendez, L.R. Radovic, B. Xia, J. Phillips, J. Phys. Chem. 100 (1996) 17243.
  • 8. P. Chen, X. Wu, J. Lin, K. L. Tan, Science 285 (1999) 91.
  • 9. Z.H. Zhu, G.Q. Lu, S.C. Smith, Carbon 42 (2004) 2509.
  • 10. S. Challet, P. Azais, R.J.M. Pellenq, O. Isnard, J. -L. Soubeyroux, L. Duclaux, J. Phys. Chem. Solids 65 (2004) 541.
  • 11. K. Kim, H. Lee, K. Han, J. Kim, M. Song, M. Park, J. Lee, J. Kang, J. Phys. Chem. B 109 (2005) 8983.
  • 12. S. Dag, Y. Ozturk, S. Ciraci, T. Yildirim, Phys. Rev. B 72 (2005) 155404.
  • 13. A. Lueking, R.T. Yang, J. Catal. 206 (2002) 165.
  • 14. F.H. Yang, A.J. Lachawiec, R.T. Yang, J. Phys. Chem. B 110 (2006) 6236.
  • 15. A. Anson, E. Lafuente, E. Urriolabeitia, R. Navarro, A.M. Benito, W.K. Maser, M.T. Martinez, J. Phys. Chem. B 110 (2006) 6643.
  • 16. H. Takagi, H. Hatori, Y. Yamada, S. Matsuo, M. Shiraishi, J. Alloy. Compd. 385 (2004) 257.
  • 17. J. Ozaki, W. Ohizumi, A. Oya, M. J. Illan- Gomez, M.C. Roman-Martinez, A. Linares-Solano, Carbon 38 (2000) 775.
  • 18. G. Shevla, G. Comprehensive Analytical Chemistry, Volume VI, Analytical Infrared Spectroscopy, Elsevier, Amsterdam, 1976, pp. 334.
  • 19. Y. Yürüm, N. Altuntas, Fuel Science and Technol. Int., 12 (1994) 1115.
  • 20. IUPAC Compendium of Chemical Terminology, second ed., vol. 46, 1997, p. 1976.
  • 21. D.A. Bulushev, I. Yuranov, E. I. Suvorova, P. A. Buffat, L. Kiwi-Minsker, J. Catalysis, 224 (2004) 8.
  • 22. G. Sandrock, Hydrogen-Metal Systems, in Hydrogen Energy System, Y. Yürüm (Ed.), NATOASI Series E, Vol. 295, Kluwer Academic Publishers, Dordrecht, 1995, pp. 135.