Organic farming by using Saharan soil: could It be an alternative to fertilizers?

Sahra toprak çözeltisinin görünür ışık ile aydınlatıldığı zaman biyolojik kullanılabilir demir üretme potansiyeline sahip olabileceği gösterilmiştir, ayrıca bu toprak bazı temel makro ve mikro besin öğeleri içermektedir. Bu çalışmada, farklı besin ortamlarının ekmeklik buğday (Triticum aestivum L.) ve makarnalık buğday (Triticum durum L.)’ın bazı çeşitlerinin fide gelişimi üzerine etkileri araştırılmıştır. Besin ortamı olarak; Hewitt besin çözeltisi, ışıklandırılmış ve karanlıkta bırakılmış Sahra çöl toprağı çözeltisi ve deiyonize su kullanılmıştır [1]. Fide uzunluğu (cm.fide-1), yaprak alanı (cm2.fide-1) ve fotosentetik pigmentler (klorofil a, klorofil b ve karotenoidler (c+x), mg.ml-1 g taze ağırlık-1) belirlenmiştir. Bu çalışmanın sonuçları göstermektedir ki, aydınlatılmış Sahra toprak çözeltisi ile beslenen buğday çeşitleri Hewitt besin çözeltisi ile karşılaştırılabilir sonuçlar vermiştir.

Sahra çöl toprağı ile organik tarım: gübrelere bir alternatif olabilir mi?

It has been shown that Saharan soil may have the potential of producing bioavailable iron when illuminated with visible light and also it has some essential macro and micro nutrient elements. In this study the impact of various growth media on development of some bread wheat (Triticum aestivum L.) and durum wheat (Triticum durum L.) cultivars have been investigated. As a four different nutrient media, Hewitt nutrient solution [1], illuminated and non-illuminated Saharan desert soil solutions and distilled water have been utilized. Shoot length (cm.seedling-1), leaf area (cm2 seedling-1) and photosynthetic pigments [chlorophyll a, chlorophyll b and carotenoids, mg ml-1 g fresh weight (g fw)-1] have been determined. The results of this study indicate that, wheat varieties fed by irradiated Saharan soil solution gave comparable results to Hewitt nutrient solution.

___

  • [1] E.J. Hewitt, Sand and water culture methods used in the study of plant nutrition, Tech. Com. No. 22 (Revised 2nd edition) comm. (1966) Bur. Hort. and Plantation Crops.
  • [2] A.C. Saydam, H.Z. Şenyuva, Deserts ? Can they be the potential supplier of biovailable iron. Geophysical Research Letters, Vol. 29 (2002) No.11, 10.1029/2001GL013562.
  • [3] K.A. Mace, N. Kubilay, R.A. Duce, Organic nitrogen in rain and aerosol in the eastern Mediterranean atmosphere: An association with atmospheric dust Journal of Geophysical Research- Atmospheres. 108 (D10): Art. No. 4320, 2003.
  • [4] B. Sulzberger, H. Laubscher, Reactivity of various types of iron(III) (hydr)oxides towards light induced dissolution. Marine Chemistry, 50 (1995) 103.
  • [5] C. Salles, N. Rico–Caicedo, J.L. Seidel, B. Picot, M.G. Tournoud, Atmospheric input of Contaminants to a small Mediterranean basin, 1 Université Montpellier 2-Hydrosciences (UMR 5569 CNRS-IRD-UM2), Université Montpellier II, Maison des Sciences de l’Eau, F-34095 Montpellier Cedex 5, France, 2008.
  • [6] R.J. Charlson, J.E. Lovelock, M.O. Andreae, S.G. Warren, Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate, Nature 326 (1987) 655.
  • [7] I. Koren, Y. Kaufman, R. Washington, M.C. Todd, Y. Rudich, J.V. Martins, D. Rosenfeld, The Bodélé depression: a single spot in the Sahara that provides most of the mineral dust to the Amazon forest, Environ. Res. Lett., 1 (2006) 14005.
  • [8] T. Jickells, L. Spokes, Atmospheric iron inputs to the oceans. Ocean Sciences Meeting, Jan. 24-28, San Antonio, Tx, Supplement to EOS, 80 (2000) 49.
  • [9] D. Martin, G. Bergametti, B. Strauss, On the use of the synoptic vertical velocity in trajectory model: validation by geochemical tracers. Atmospheric Environment, 24A (1990) 2059.
  • [10] S. Mori, Iron acuisition by plants, current opinion in Plant Biology, 2 (1999) 250.
  • [11] A.D. Sims, J.A. Gamon, Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages, Remote Sens. Environ., 81 (2002) 337.
  • [12] A. Avila, M. Alarcon, I. Queralt, The chemical composition of dust transported in red rains–its contribution to the biogeochemical cycle of a holm oak forest in Cataloni (Spain). Atm. Environ., 32, 2 (1998) 179.
  • [13] P.A. Mayewski, L.D. Meeker, S. Whitlow, M.S. Twickler, M.C. Morrison, R.B. Alley, P. Bloomfield, K.Taylor, The atmosphere during the Younger Dryas, Science, 261 (1993c) 195.
  • [14] N. Terys, L.J. Waldron, S.E. Taylor, Environmental influence in leaf expansion. In: J. E. Dalke, Milthorpe, F.L. (Eds.), The Growth and Functioning of Leaver Cambridge University Press, Cambridge (1983) pp. 179.
  • [15] D.J.C. Friend, V. A. Helson, J. E. Fisher, Leaf Growth in Marquis Wheat, as regulated by temperature, light intensity and daylength, Can. J. Bot. 40 (1962) 1299.
  • [16] H.K. Lichtententler, Chlorophylls and carotenoids, the pigments of photosynthetic biomembranes. Methods Enzymol., 148 (1987) 350.
  • [17] L.D. Whitting, W.R. Allardice, X-ray diffraction techniques. p. 331-362. In A. Klute et al (ed) Methods of soil analysis (1986) Part 1.2 nd ed. Agron.Monogr. 9. ASA and SSSA, Madison, Wisconsin USA.
  • [18] E. Ganor A. Foner, The mineralogical and chemical properties and the behavior of Aeolian Saharan dust over Israel. In: The Impact of Desert Dust Across the Mediterranean. Eds: S. Guerzoni, R. Chester, Kluwer Academic Publishers, Nederlands, (1996) 163.