N/TiO2 Sistemi Kullanarak Fenolün Fotobozulması

Makalede ılımlı ortamda sentezlenen 10-30 nm boyutlarındaki TiO2 nanopartikülleri ile 100 mg/ml NH4OH varlığında fenolün fotokimyasal bozunması çalışılmıştır. Fotokimyasal bozunma sürecinden önce ve sonra çekilmiş “Varian” ci - hazında absorsiyon verileri temelinde ispatlanmıştır. Fenolün UV-görülebilen bölgede fotokimyasal bozulması deneylerle doğrulanmıştır.

Photodegradation of Phenol Using N/TiO2 System

n the article the photochemical dissociation of phenol in the participation of TiO2 nano-particles and methyl-3-aminocrotonate was done for the first time, the period was taken as 60 minutes, the processing of photochemical dissoci- ation was verified by the curves drawn for reaction solution in the UV radiation device and the 60% decomposition of phenol was defined. Light absorption of a system with TiO2 is observed only in the UV area, whereas absorption of a system with N/TiO2 falls on the visible area of the spectrum.

___

  • 1. D. Gümüş and F. Akbal, Photocatalytic degradation of textile dye and wastewater, Water, Air, and Soil Pollution, 216 (2011) 117-124.
  • 2. A. M. De Luis, J. I. Lombrana, A. Menendez, and J. Sanz, Analysis of the toxicity of phenol solutions treated with H2O2/UV and H 2O2/Fe oxidative systems, Industr. Engineer. Chem. Res., 50 (2011) 1928-1937.
  • 3. H. Xuebing, Y. Yun, R. Shuang, L. Na, W. Yongqing, Z. Jianer, Highly efficient removal of phenol from aqueous solutions using graphene oxide/Al2O3 composite membrane, J. Porous Mater., 25 (2018) 719-726.
  • 4. C. Santhosh, V. Velmurugan, G. Jacob, S.K. Jeong, A.N. Grace, A. Bhatnagar, Role of nanomaterials in water treatment applications: a review, Chem. Eng. J., 306 (2016) 1116-1137.
  • 5. F. Wang, Novel high performance magnetic activated carbon for phenol removal: equilibrium, kinetics and thermodynamics, J. Porous Mater., 24 (2017) 1- 9.
  • 6. S. Mohammadi, A. Kargari, H. Sanaeepur, K. Abbassian, A. Najafi, E. Mofarrah, Phenol removal from industrial wastewaters: a short review, Desalin. Water Treat., 53 (2015) 2215-2234.
  • 7. S.N. Gosling, N.W. Arnell, A global assessment of the impact of climate change on water scarcity, Clim. Change, 134 (2016) 371-385.
  • 8. D. Yue, X. Qian, Y. Zhao, Photocatalytic remediation of ionic pollutant, Sci. Bullet., 60 (2015) 1791-1806.
  • 9. X. Qiu and C. Burda, Chemically synthesized nitrogen-doped metal oxide nanoparticles, Chem. Phys., 339 (2017) 1-10.
  • 10. Y. Li, W. Cao, F. Ran, and X. Zhang, Photocatalytic degradation of methylene blue aqueous solution under visible light irra¬diation by using N-doped titanium dioxide, Key Engineer. Mater., 336-338 (2007) 1972-1975.
  • 11. A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C, 1 (2000) 1-21.
  • 12. E.M. Gadirova, Photochemical degradation of phenol in the presence of titanium dioxide nanoparticles, Proceedings of Universities, Appl. Chem.Biotechnol., 9 (2019) 176-182.