Mikrodizin Analizinden Bulgular: SLC Taşıyıcı Proteinleri, Meme Kanseri Kök Hücreleriyle Mücadelede Potansiyel Hedefler Olabilir

Meme kanseri kök hücrelerinin kendi kendini yenilemesi, kendiliğinden olan ve sonradan kazanılan ilaç direnci, meme kanserinin tedavisi stratejilerini önleyen ana faktörlerdir. Yeni terapötik ajanlar geliştirmek için yapılan çalışmalarda hedeflenecek olan biyobelirteç molekülleri araştırılmaktadır. Bu çalışmada, meme kanseri kök hücrelerinin (MKKH) özelliklerini taşıyan, antikanser ilaç-paklitaksele dirençli meme kanseri hücre hattında tüm genom cDNA mikrodizin analizi yapılmıştır. İlaca duyarlı parental MCF-7 hücre hattı kontrol grubu olarak kullanılmıştır. MKKH benzeri hücrelerde solute carrier (SLC) taşıyıcı proteinleri kodlayan ve aşırı ifade edilen genler analiz edilmiştir. Elde edilen sonuçlara göre, 21 adet SLC proteini kodlayan genlerin ifade düzeyleri 2.0 ve 35 kat arasında artmıştır. SLC38A5, SLC43A3, SLC6A15, SLC1A1, SLC2A3, SLC26A2, SLC22A15, SLC16A3 genlerinin ifade düzeyleri 9 ile 35 kat arasında artmıştır. Dolayısıyla, ilgili proteinler potansiyel hedefler olarak kabul edilebilir ve bu bilgiler, meme kanseri kök hücrelerini hedef alan biyobelirteçlerin keşfedilmesi için yeni bir araştırma alanı açacaktır.

Implications From A Microarray Analysis: Solute Carrier Proteins May Be Potential Targets to Combat Stemness of Breast Cancer

Self renewal of cancer stem cells, intrinsic and/or acquired drug resistance are the main factors preventing the anticancer therapy strategies for breast cancer. There are progressing studies to develop new therapeutic agents and toinvestigate the biomarker molecules to be targeted. In this study, a cDNA microarray analysis was performed in anticancerdrug-paclitaxel resistant breast cancer cell line, which expresses the properties of breast cancer stem cells (BCSC). Thedrug sensitive parental MCF-7 cell line was used as control group. The genes overexpressed in BCSC-like cells that encodesolute carrier (SLC) proteins were analyzed. According to the results, 21 SLC protein encoding genes were upregulated inthe range of 2.0 and 35 folds. The genes, SLC38A5, SLC43A3, SLC6A15, SLC1A1, SLC2A3, SLC26A2, SLC22A15 and SLC16A3are overexpressed about 9-35 folds. So, the related proteins may be regarded as potential targets and this will open a newresearch venue for the discovery of biomarkers to target breast cancer stem cells.

___

  • 1. E. Perland, R. Fredriksson, Classification Systems of Secondary Active Transporters, Trends Pharmacol. Sci., 38 (2017) 305-315.
  • 2. M. Rask-Andersen, S. Masuram, R. Fredriksson, H.B. Schiöth, Solute carriers as drug targets: current use, clinical trials and prospective, Mol. Aspects Med., 34 (2013) 702-710.
  • 3. F.S. Liu, Mechanisms of chemotherapeutic drug resistance in cancer therapy-a quick review, Taiwan J. Obstet. Gynecol., 48 (2009) 239-244.
  • 4. M.D. Kars, Ö.D. İşeri, U. Gunduz, A.U. Ural, F. Arpacı, J. Molnar, Development of rational in vitro models for drug resistance in breast cancer and modulation of MDR by selected compounds, Anticancer Res., 26 (2006) 4559-4568.
  • 5. M.D. Kars, Ö.D. İşeri, U. Gündüz, Drug resistant breast cancer cells overexpress ETS1 gene, Biomed. Pharmacother., 64 (2010) 458-462.
  • 6. M.D. Kars, Ö.D. İşeri, U. Gündüz, A microarray based expression profiling of paclitaxel and vincristine resistant MCF-7 cells, Eur. J. Pharmacol., 657 (2011) 4-9.
  • 7. M.D. Kars, G. Yıldırım, Determination of the Target Proteins in Chemotherapy Resistant Breast Cancer Stem Cell-Like Cells by Protein Array, Eur. J. Pharmacology, 848 (2019) 23- 29.
  • 8. M.D. Kars, Ö.D. İşeri, U. Gündüz, J. Molnar, Reversal of MDR by Synthetic and Natural Compounds in Drug Resistant MCF7 Cell Lines, Chemotherapy, 54 (2008) 194-200.
  • 9. Ö.D. İşeri, M.D Kars, F. Arpacı, U. Gündüz, Gene Expression Analysis of Drug Resistant MCF-7 Cells: Implications for Relation to Extracellular Matrix Proteins, Cancer Chemoth. Pharm., 65 (2010) 447-455.
  • 10. V. Tirino, V. Desiderio, F. Paino, G. Papaccio, M. De Rosa, Methods for Cancer Stem Cell Detection and Isolation, Somatic Stem Cells: Methods and Protocols, Methods Mol. Biol., 879 (2012) 32.
  • 11. P. Valent, D. Bonnet, R. De Maria, T. Lapidot, et al., Cancer stem cell definitions and terminology the devil is in the details, Nat. Rev. Cancer., 12 (2012) 767-775.
  • 12. Y.D. Bhutia, V. Ganapathy, Glutamine transporters in mammalian cells and their functions in physiology and cancer, Biochim. Biophys. Acta., 1863 (2016) 2531-2539.
  • 13. N. Shimozono, M. Jinnin, M. Masuzawa, M. Masuzawa, et al., NUP160 SLC43A3 is a novel recurrent fusion oncogene in angiosarcoma, Cancer Res., 75 (2015) 4458-4465.
  • 14. E. Pedraz-Cuesta, S. Christensen, A.A. Jensen, N.F. Jensen, et al., The glutamate transport inhibitor DL-Threo-βBenzyloxyaspartic acid (DL-TBOA) differentially affects SN38- and oxaliplatin-induced death of drug-resistant colorectal cancer cells, BMC Cancer., 15 (2015) 411.
  • 15. M. Masin, J. Vazquez, S. Rossi, S. Groeneveld, et al., GLUT3 is induced during epithelial-mesenchymal transition and promotes tumor cell proliferation in non-small cell lung cancer, Cancer Metab., 29 (2014) 11.
  • 16. Ö.D. İşeri, M.D. Kars, F. Arpacı, C. Atalay, I. Pak, U. Gündüz, Drug Resistant MCF-7 Cells Exhibit Epithelial-Mesenchymal Transition Gene Expression Pattern, Biomed. Pharmacother., 65 (2011) 40-45.
  • 17. L.Y. Dimberg, C.G. Towers, K. Behbakht, T.J. Hotz, et al., A Genome-Wide Loss-of-Function Screen Identifies SLC26A2 as a Novel Mediator of TRAIL Resistance, Mol. Cancer Res., 15 (2017) 382-394.
  • 18. A.K. Witkiewicz, D. Whitaker-Menezes, A. Dasgupta, N.J. Philp, Using the “reverse Warburg effect” to identify highrisk breast cancer patients: stromal MCT4 predicts poor clinical outcome in triple-negative breast cancers, Cell Cycle, 11 (2012) 1108-1117.