Jelatin/Okside Dekstran Kriyojeller: In-Vitro Biyouyumluluk Değerlendirilmesi

B ir dokunun geliştirilmesi uygun bir destek/matriks dokusuna uygun hücreler ve sinyal moleküllerinin implantasyonuna gereksinim duyar. Doku ex-vivo doku oluşumunda destek malzemeleri olan doku iskeleleri biyolojik olarak uygun yapılar oluşturmak için belirli özelliklere sahip olmaları gereklidir. Bu çalışmada 3B’lu polimer jelatin/okside dekstran doku iskeleleri kriyojelasyon tekniği ile hazırlanmıştır. Hücre-doku iskelesi etkileşimleri Taramalı Elektron Mikroskobu ve Konfokal Lazer Mikroskobisi ile incelenmiştir. Doku iskelelerinin biyo ve kan uyumlulukları ile olası sitotoksik etkileri ayrıca incelenmiştir. Olası genotoksik etkileri DNA parçalanması be kırılması ile analiz edilmiştir. Sonuçlarımız göstermektedir ki, kriyojelasyon ile hazırlanan bu jelatin/ok-dekstran doku iskeleleri sitotoksik ve genotoksik etki göstermemişlerdir ve yüksek biyouyumluluk ve kan uyumluluğu ve kondrosit hücre etkileşimi göstermişlerdir

Gelatin/Oxide-Dextran Cryogels: In-Vitro Biocompatibility Evaluations

Engineering a tissue requires implantation of a suitable support/matrix material; seeded with appropriate cells and signaling molecules. Scaffolds which are the support material for the ex-vivo tissue formation, should have desired properties to form a biologically compatible constructs. In this recent study 3D polymeric gelatin/oxide dextran scaffolds were prepared by cryogelation. The cell-scaffold interactions were evaluated by Scanning Electron Microcopy and Confocal Laser Microscopy. Biocompatibility and haemocompatibility of the scaffolds and possible cytotoxicity were also investigated. Possible genotoxic effects of the scaffolds were evaluated with DNA fragmentation and breakage. Our results demonstrated that, gelatin/ox-dextran scaffolds which were prepared by cryogelation present no cytotoxicity and genotoxicity, show higher bio and haemocompatibility with excellent chondrocyte interaction.

___

  • D.W. Hutmacher, Scaffolds in tissue engineering bone and cartilage, Biomaterials, 21 (2000) 2529.
  • R.S, Langer, J.P. Vacanti, Tissue engineering: the challenges ahead, Sci. Am., 280 (1999) 86.
  • R. Lanza, R.S. Langer, J.P. Vacanti, Principles of Tissue Engineering Elsevier Academic Press, (1997) ISBN 10: 0-12-370615-7.
  • S. Yang, K.F. Leong, Z. Du, C.K. Chua, The Design of Scaffolds for Use in Tissue Engineering. Part I. Traditional Factors, Tissue Eng., 7 (2001) 679.
  • H.S. Yoo, E.A. Lee, J.J. Yoon, T.G. Park, Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering, Biomaterials, 26 (2005) 1925.
  • A. Chetty, T. Steynberg, S. Moolman, R. Nilen, A. Joubert, W. Richter, Hydroxyapatite-coated polyurethane for auricular cartilage replacement: an in vitro study, J. Biomed. Mater. Res. A, 84 (2005) 475.
  • N. Toyokawa, H. Fujioka, T. Kokubu, I. Nagura, A. Inui, R. Sakata, M. Satake, H. Kaneko, M. Kurosaka, Electrospun synthetic polymer scaffold for cartilage repair without cultured cells in an animal model, Arthroscopy, 26 (2010) 375.
  • Y. Liu, L. Zhang, G. Zhou, Q. Li, W. Liu, Z. Yu, X. Luo, T. Jiang, W. Zhang, Y. Cao, In vitro engineering of human ear-shaped cartilage assisted with CAD/CAM technology, Biomaterials, 31 (2010) 2176.
  • N. Bolgen, Y. Yang, P. Korkusuz, E. Guzel, A.J. El Haj, E. Piskin, Three-dimensional ingrowth of bone cells within biodegradable cryogel scaffolds in bioreactors at different regimes, Tissue Eng. Part A, 14 (2008) 1743.
  • A. Kumar, F.M. Plieva, I.Y. Galaev, B. Mattiasson, Affinity fractionation of lymphocytes using a monolithic cryogel, J. Immun. Meth., 283 (2003) 185.
  • A. Jungbauer, R. Hahn, Monoliths for fast bioseparation applications in biotechnology, J. Sep. Sci., 27 (2004) and their
  • S. Nilsang, K.S. Nandakumar, I.Y. Galaev, S.K. Rakshit, R. Holmdahl, B. Mattiasson, A. Kumar, Monoclonal Antibody Production Using a New Supermacroporous Cryogel Bioreactor, Biotech. Progr., 23 (2007) 932.
  • N. Bolgen, I. Vargel, P. Korkusuz, E. Guzel, F. Plieva, I. Galaev, B. Matiasson, E. Piskin, Tissue responses to novel tissue engineering biodegradable cryogel scaffolds: An animal model, J. Biomed. Mat. Res., Part A. 91A (2009), 60.
  • I. Inci, H. Kirsebom, I.G. Galaev, B. Mattiasson, E. Piskin, Gelatin cryogels cross-linked with oxidized dextran and containing freshly formed hydroxyapatite as potential bone tissue engineering scaffolds, J. Tissue Eng. Regen. Med., (2012). İssue,page
  • M. Jurga, M.B. Dainiak, A. Sarnowska, A. Jablonska, A. Tripathi, F.M. Plieva, I.N. Savina, L. Strojek, H. Jungvid, A. Kumar, B. Lukomska, K. Domanska-Janik, N. Forraz, C.P. McGuckin, C.P. The performance of laminin-containing cryogel scaffolds in neural tissue regeneration, Biomaterials, 32 (2011) 3423.
  • S. Odabas, G. Feichtinger, P. Korkusuz, I. Inci, E. Bilgic,A.S. Yar, T. Cavusoglu, S. Menevse, I. Vargel, E. Piskin, Bmp-7 Expressing Genetically Modified Primary Chondrocytes in Cryogel Scaffolds for Rabbit Auricular Cartilage Repair, J. Tissue Eng. Regen. Med., (2012). İssue,page
  • B. Garipcan, S. Odabas, G. Demirel, J. Burger, S. Nonnenmann, T.M. Coster, M.E. Gallo, B. Nabet, J.E. Spanier, E. Piskin, In vitro Biocompatibility of n-type and Undoped Silicon Nanowires, Adv. Biomaterials, 13 (2011) B3.
  • H. Zhao, L. Ma, Y. Gong, C. Gao, J. Shen, A polylactide/ fibrin gel composite scaffold for cartilage tissue engineering: fabrication and an in vitro evaluation, J. Mater. Sci. Mater. Med., 20 (2009) 135.
  • F.C.R. Manning, L.J. Blankenship, J.R.P. Wise, J. Xu, L.C. Bridgewater, S.R. Patierno, Induction of Carcinogenic Chromate: Relationship to DNA Damage, DNA Genotoxicity, and Inhibition of Macromolecular Synthesis Environ, Environ. Health Perspect., 102 (1994) 159. Fragmentation by
  • H.W. Kang, Y. Tabata, Y. Ikada, Fabrication of porous gelatin scaffolds for tissue engineering, Biomaterials, 14 (1999) 1339.
  • S.G. Lévesque, M.S. Shoichet, Synthesis of cell- adhesive dextran hydrogels and macroporous scaffolds, Biomaterials, 30 (2006) 5277.
  • E. Zeiger, B. Gollapudi, P. Spencer, Genetic toxicity and carcinogenicity studies of glutaraldehyde--a review, Mutat. Res., 2 (2005) 136.
  • S.H. Oh, I.K. Park, J.M. Kim, J.H. Lee, In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method, Biomaterials, 9 (2007) 1664.
  • B. Yang, Z. Yin, J. Cao, Z. Shi, Z. Zhang, H. Song, F. Liu, B. Caterson, In vitro cartilage tissue engineering using cancellous bone matrix gelatin as a biodegradable scaffold, Biomed. Mater, 4 (2010), 045003.
  • F. Khan, M. Snyder, L. Pechet, The Laboratory of Coagulation A review of present laboratory techniques, J. Thromb. Thrombolysis, 5 (1998) 83.
  • S. Murugesan, T.J. Park, H. Yang, S. Mousa, R.J. Linhardt, Blood compatible carbon nanotubes--nano- based neoproteoglycans, Langmuir, 22 (2006) 3461.
  • A. Noyan, Physiology in Life and Medicine, (2004) Meteksan Press, 975774610X, 458.
  • A.K. Bajpai, Fibrinogen adsorption onto macroporous polymeric surfaces: correlation with biocompatibility aspects, J. Mater. Sci. Mater. Me, 19 (2008) 343.
  • W.B. Tsai, J.M. Grunkemeier, T.A. Horbett, Variations in the ability of adsorbed fibrinogen to mediate platelet adhesion to polystyrene-based materials: a multivariate statistical analysis of antibody binding to the platelet binding sites of fibrinogen, J. Biomed. Mater. Res. A, 67 (2003) 1255.
  • Duzen Laboratory Group. Laboratory Tests Booklet, (2011) ISBN : 9789944587617.
  • G. Wang, Y. Shen, Y. Y. Cao, Q. Yu, R. Guidoin, Biocompatibility study of plasma-coated nitinol (NiTi alloy) stents, IET Nanobiotechnol, 1 (2007) 102.
  • J.K. Unger, C. Haltern, B. Dohmen, A. Gressner, C. Grosse-Siestrup, D.A. Groneberg, R. Rossaint, Albumin and hydroxyethyl starch 130 kDa/0.4 improve Şlter clearance and haemocompatibility in haemo and plasmaŞltration an in vitro study, Nephrol. Dial. Transplant, 20 (2005) 1922.
  • A.S. Lotza, J.B. Havlaa, E. Richtera, K. Frölichb, R. Staudenmaierc, R. Hagenb, N.H. Kleinsasserb, Cytotoxic and genotoxic effects of matrices for cartilage tissue engineering, Toxic. Lett., 190 (2009)
  • Y. Hwang, C. Zhang, S.Varghese, Poly(ethylene glycol) cryogels as potential cell scaffolds: effect of polymerization conditions on cryogel microstructure and properties, J. Mater. Chem., 20 (2010) 345.
Hacettepe Journal of Biology and Chemistry-Cover
  • ISSN: 2687-475X
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1972
  • Yayıncı: Hacettepe Üniversitesi, Fen Fakültesi