Fitoremediasyon (Yeşil Islah) Yöntemi ile Ortamdan Ağır Metal Uzaklaştırılması

Tüm dünyada gelişen teknoloji ve tarımda verimi arttırma adına kullanılan yeni teknikler insan hayatında kolaylıklar sağlarken, yaşamın temel kaynağı olan doğayı da bozmaktadır. Doğanın kirlenmesi yani bozulması ekolojik çevrim içerisinde canlı türü ayırt etmeksizin hepsini olumsuz yönde etkilemekte, özellikle de en büyük yarayı insan almaktadır. Fakat doğadan olumsuz geri dönüşümler çok uzun zaman aldığı için gelecek nesiller adına yapılan yatırımlar kontrolsüzce büyüdükçe, zararları da geri dönüşümsüz olarak büyümektedir. Bu çalışmada doğanın kendisinin yine kendi ürünleri yani hiperakümülatör bitkiler tarafından temizlenmesi veya zararlıların etkisiz hale getirilmesi yöntemi olan fitoremediasyon (bitkisel ıslah sistemleri veya yeşil ıslah) teknikleri ve kullanım alanları anlatılmaktadır. Ekonomik, estetik görüntüyü bozmayan ve doğaya zarar vermeyen bu yöntem zengin floraya sahip, her açıdan gelişmekte olan ülkemiz için ağır metallerce kirlenmiş toprak ve sular ile mücadelede yaygın olarak kulanılabilecek bir yöntemdir. Bu yöntemin ülkemizde ve dünyadaki çalışma örnekleri ve uygulanabilirliği hakkında bilgiler bu çalışma ile anlatılmaktadır.

Removal of Heavy Metals from the Environment via Phytoremediation (Green Reclamation) Method

New methods that are being used all over the world in order to advance technology and increase efficiency in agriculture disrupt the nature which is the main source of life while providing conveniences for people. Pollution of nature has negative effects for all living things within the ecological cycles and humans are inflicted with the most significant damage. However, since negative rebounds from the environment take a long time, the harmful effects increase irrevocably with increasing investments for future generations. In this study, phytoremediation (vegetative reclamation systems or green reclamation) methods are explained which are the means of neutralizing the harmful aspects in nature or their cleansing via hyperaccumulator plants. This method that is economical, does not disturb the aesthetic appearance and does not harm the nature is a method that can be widely used to combat soil and waters polluted with heavy metals in our country which is continuing to develop in every aspect. This study provides information about the exemplary studies in our country and in the world as well as the applicability of the method.

___

  • 1. C. Özay, R. Mammadov, Ağır metaller ve süs bitkilerinin fitoremediasyonda kullanılabilirliği, BAÜ Fen Bil. Enst. Dergisi C, 15 (2013) 67.
  • 2. H.S. Başkaya, A. Teksoy, Topraklarda ağır metaller ve ağır metal kirliliği, I. Uludağ Çevre Mühendisliği Sempozyumu, 24-26 Haziran, Bursa, (1996) 763.
  • 3. X.X. Long, X.E. Yang, W.Z. Ni, Current status and perspective on phytoremediation of heavy metal polluted soils, J. Appl. Ecol., 13 (2002) 757.
  • 4. İ. Yurdakul, Kirletilmiş Topraklarda ve Sularda Bitkisel İyileştirme Teknikleri ve Önemi, Turk J Agric Res, 2 (2015)55.Turk
  • 5. D.E. Salt, W.E. Rauser, MgATP-Dependent Transport of Phytochelatins Across the Tonoplast of Oat Roots, Plant. Physiol., 107 (1995) 1293.
  • 6. D.J. Glass, The 2000 Phytoremediation Industry. Glass Associates, Needham, MA, (2000).
  • 7. M. Arshad, J. Silvestre, E. Pinelli, J. Kallerhoff, M. Kaemmerer, A. Tarigo, A Field Study of Lead Phytoextraction by Various Scented Pelargonium Cultivars, Chemosphere, 71 (2008) 2187.
  • 8. W.Y. Shi, H.B. Shao, H. Li, M.A. Shao, S. Du, CoRemediation of the Lead Polluted Garden Soil by Exogenous Natural Zeolite and Humic Acids, J. Hazard. Mater., 167 (2009) 136.
  • 9. S. Clemens, Toxic Metal Accumulation, Responses to Exposure and Mechanisms of Tolerance in Plants, Biochimie, 88 (2006) 1707.
  • 10. R.R. Brooks, General Introduction. In: Brooks, R.R. (ed.). Plants That Hyperaccumulate Heavy Metals: Their Role in Phytoremediation, Microbiology, Archaeology, Mineral Exploration and Phytomining. CAB International, New York (1998) 1.
  • 11. A.J.M. Baker, R.R. Brooks, Terrestrial Higher Plants Which Hyperaccumulate Metallic Elements–A Review of Their Distribution, Ecology and Phytochemistry, Biorecovery, 1 (1989) 81.
  • 12. D.R. Ellis, D.E.Salt, Plants, Selenium and Human Health, Curr. Opin. Plant. Biol, 6 (2003) 273.
  • 13. R.D. Reeves, Hyperaccumulation of Trace Elements by Plants. In: Morel, J.L., Echevarria, G. ve Goncharova, N. (Eds.). Phytoremediation of MetalContaminated Soils, NATO Science Series: IV: Earth and Environmental Sciences, Springer, NY,(2006) 1.
  • 14. M.J. Milner, L.V. Kochian, Investigating Heavy-Metal Hyperaccumulation Using Thlaspi caerulescens as a Model System, Ann. Bot.-London, 102 (2008) 3.
  • 15. R.L. Sun, Q.X. Zhou, Heavy Metal Tolerance and Hyperaccumulation of Higher Plants and Their Molecular Mechanisms, Acta Phytoecologica Sinica, 19 (2005) 321.
  • 16. E. Pilon-Smits, Phytoremediation. Annual Reviews of Plant Biology, 56 (2005) 15.
  • 17. D.L. LeDuc, M. AbdelSamie, M. Montes-Bayon, L.M. Wenton, Overexpressing both ATP Sulfurylase and Selenocysteine Methyltransferase Enhances Selenium Phytoremediation Traits in Indian Mustard, Environmental Pollution, 144 (2006) 70-76.
  • 18. S.D. Lindblom, S. Abdel-Ghany, B.R. Hanson, M.K. Wenter, Constitutive Expression of a High-Affinity Sulfate Transporter in Indian Mustard Affects Metal Tolerance and Accumulation, J. Environ. Qual., 35 (2006) 726.
  • 19. E. Kassis, N.Cathala, H. Rouached, F. Rouger, Characterization of a Selenate-Resistant Arabidopsis Mutant. Root Growth as a Potential Target for Selenate Toxicity, Plant. Physiol., 143 (2007) 1231.
  • 20. M.A. Klein, H. Sekimoto, M.J. Milner, L.V. Kochian, Investigation of Heavy Metal Hyperaccumulation at the Cellular Level: Development and Characterization of Thlaspi caerulescens Suspension Cell Lines, Plant. Physiol., 147 (2008) 2006.
  • 21. A. Lebaudy, A. Vavasseur, E. Hosy, K. Hecker, Plant Adaptation to Fluctuating Environment and Biomass Production are Strongly Dependent on Guard Cell Potassium Channels, PNAS, 105 (2008) 5271.
  • 22. D.G. Mendoza-Cózatl, E. Butko, F. Springer, L. Harper, Identification of High Levels of Phytochelatins, Glutathione and Cadmium in the Phloem Sap of Brassica napus. A Role for Thiol-Peptides in the Long-Distance Transport of Cadmium and the Effect of Cadmium on Iron Translocation, Plant Journal, 54 (2008) 249.
  • 23. R.L. Chaney, J.S. Angle, M.S. McIntosh, R.D. Reeves, Y.M. Li, E.P. Brewer, K.Y. Chen, R.J. Roseberg, H. Perner, E.C. Synkowski, Using Hyperaccumulator Plants to Phytoextract Soil Ni and Cd, Zeitschrift Naturforschung, 60 (2005) 190.
  • 24. B. Meyers, A. Zaitsman, B. Lacroix, S.V. Kozlovsky, A. Krichevsky, Nuclear and Plastid Genetic Engineering of Plants: Comparison of Opportunities and Challenges, Biotechnol. Adv., 6 (2010) 747.
  • 25. H. Terzi, M. Yıldız, Ağır Metaller ve Fitoremediasyon: Fizyolojik ve Moleküler Mekanizmalar, Afyon Kocatepe University Journal of Sciences, 11 (2011) 1.
  • 26. I. Raskin, R.D. Smith, D.E. Salt, Phytoremediation of metals using plants to remove pollutants from the environment, Curr. Opin., Birstechnol, 8 (1997) 221.
  • 27. D.J. Glass, Economic patential of phytoremediation, Phyforemediation of Toxic Metals: Using Plants to Clean Up the Environment, (Raskin I., Ensley B.D., Eds.), John Wiley&Sans, New York (1999)15.
  • 28. EPA, Contaminants and remedial options at select metals-Contaminated Sites, EPA/540/R-95/512(1995)6.
  • 29. P.K. Padmavathiamma, Y.L. Loretta, Phytoremediation Technology: Hyper-accumulation Metals in Plants. Water Air Soil Pollution, 184 (2007) 105.
  • 30. M.J. Blaylock, J.W. Huang, Phytoextraction of metals. In: I. Raskin, B.D. Ensley (eds), Phytoremediation of Toxic Metals: Using Plants to Clean-up the Environment, Wiley, New York (2000)53.
  • 31. A.R. Memon, D. Aktopraklıgil, A. Özdemir, A. Vertii, Heavy Metal Accumulation and Detoxification Mechanisms in Plants, Tübitak MAM, Institute for Genetic Engineering and Biotechnology, KocaeliTurkey (2000).
  • 32. V. Dushenkov, P.B.A.N. Kumar, H. Motto, I. Raskin, Rhizofiltration: The Use of Plants to Remove Heavy Metals from Aqueous Streams, Environmental Science and Technology, 29 (1995) 1239.
  • 33. I. Raskin, D.E. Ensley, Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment, Wiley, New York, (2000) 352.
  • 34. M. Lee, M. Yang, Rhizofiltration Using Sunflower (Helianthus annuus L.) and Bean (Phaseolus vulgaris L. var. vulgaris) to Remediate Uranium Contaminated Groundwater, J. Hazard. Mater., 173 (2010) 589.
  • 35. V. Dushenkov, Y. Kapulnik, Phytofiltration of metals. In: Raskin, I. ve Ensley, B.D. (eds.). Phytoremediation of Toxic Metals - Using Plants to Clean-up The Environment, Wiley, New York, (2000) 89.
  • 36. V. Bert, B. Girondelot, V. Quatannens, A. Laboudigue, A Phytostabilisation of a Metal Polluted Dredged Sediment Deposit—Mesocosm Experiment and Field Trial. In: Uhlmann, O., Annokkée, G.J. ve Arendt, F. (eds.), Proceedings of the 9th International FZK/ TNO Conference on Soil–Water Systems, Remediation Concepts and Technologies, Bordeaux, (2005) 1544.
  • 37. W.R. Berti, S.D. Cunningham, Phytostabilization of Metals. In: Raskin, I. ve Ensley, B.D. (eds.), Phytoremediation of Toxic Metals: Using Plants to Clean-up the Environment, Wiley, New York, (2000) 71.
  • 38. L. Rizzi, G. Petruzzelli, G. Poggio, G. Vigna Guidi, Soil Physical Changes and Plant Availability of Zn and Pb in a Treatability Test of Phytostabilization, Chemosphere, 57 (2004) 1039.
  • 39. L.A. Newman, C.M. Reynolds, Phytodegradation of Organic Compounds, Curr. Opin. Biotech., 15 (2004) 225.
  • 40. N. Hannink, S.J. Roser, C.E. French, A. Basran, J.A.H.Murray, S. Nicklin, N.C. Bruce, Phytoremediation of TNT by Transgenic Plants Expressing A Bacterial Nitroreductase, Nat. Biotechnol., 19 (2001) 1108.
  • 41. M.K. Banks, P. Kulakow, A.P. Schwab, Z. Chen, K. Rathbone, Degradation of Crude Oil in the Rhizosphere of Sorghum bicolor, Int. J. Phytoremediat., 5 (2003) 225.
  • 42. M. Ghosh, S.P. Singh, A Review on Phytoremediation of Heavy Metals and Utilization of its Byproducts, Appl. Ecol. Env. Res., 3 (2005) 1-18.
  • 43. I.D. Pulford, C. Watson, Phytoremediation of Heavy Metal-Contaminated Land by Trees: A Review, Environ. Int., 29 (2003) 529.
  • 44. G.S. Banuelos, Phytoextraction of Se from Soils Irrigated with Selenium-Laden Effluent, Plant Soil, 224 (2000) 251.
  • 45. D. Dushenkov, Trends in Phytoremediation of Radionucliides, Plant and Soil., 249 (2003) 167-175.
  • 46. Z. Söğüt, B.Z. Zaimoğlu, R. Erdoğan, S. Doğan, Su Kalitesinin Arttırılmasında Bitki Kullanımı (Yeşil Islah-Phytoremediation), Türkiye’nin Kıyı ve Deniz alanları IV. Ulusal Konferansı, 5-8 Kasım, Dokuz Eylül Üniversitesi, İzmir, Bildiriler Kitabı, II. Cilt, (2004), 1007.
  • 47. I.A. Mirsal, Soil pollution: origin, monitoring and remediation, Springer–Verlag Berlin Heidelberg (2004).
  • 48. R. Hamutoğlu, A.B. Dinçsoy, D. Duman, S. Aras, Biyosorpsiyon, adsorpsiyon ve fitoremediasyon yöntemleri ve uygulamaları, Türkiye Hijyen ve Deneysel Biyoloji Dergisi, 69 (2012) 235.
  • 49. T.S. Gabor, A.K. North, L.C.M. Ross, H.R. Murkin, J.S. Anderson, M.A. Turner, Beyond The Pipe: The Importance of Wetlands and Upland Conservation Practises in Watershed Management: Function and Values for Water Quality and Quantity, Ducks Unlimited Canada, (2001) 52.
  • 50. B. Türkoğlu, Toprak kirlenmesi ve kirlenmiş toprakların ıslahı, Yüksek Lisans Tezi, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Adana (2006).
  • 51. B. Alyüz, Ş. Çetin, S. Ayberk, Organik kirleticilerin arıtımında fitoremediasyon yönteminin uygulanabilirliği, Çevre sorunları sempozyumu, Mayıs, Kocaeli (2008).
  • 52. D.J. Lazaro, P.S. Kidd, C.M. Martinez, A phytogeochemical study of the Tras-Os-Montes region Ne Portugal: possible species for plant-based soil remediation technologies, Sci Total Environ, 354 (2006) 265.
  • 53. P. Madejon, J.M. Murillo, T. Maranon, F. Cabrera, M.A. Soriano, Trace element and nutrient accumulation in sunflower plants two years after the Aznolcollar Mine Spill, Sci Total Environ, 307 (2003) 239.
  • 54. N.C. Sharma, L.S. Daniel, V.S. Shivendra, Phytoextraction of excess soil phosphorus, Environ. Pollut.,146 (2007) 120.
  • 55. Ö. Vanlı, Pb, Cd ve B elementlerinin topraklardan şelat destekli fitoremediasyon yöntemiyle giderilmesi, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü (2007).
Hacettepe Journal of Biology and Chemistry-Cover
  • ISSN: 2687-475X
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1972
  • Yayıncı: Hacettepe Üniversitesi, Fen Fakültesi
Sayıdaki Diğer Makaleler

Monomer Arakatkısı Yöntemi İle Poli(metakrilamid)/Kil Nanokompozitlerinin Sentezi ve Isıl Bozunma Kinetiği

Esra Evrim Yalçınkaya

Poli(Pirol-ko-[Cu(salabza)])’nın Elektrokimyasal Sentezi: Katekolün Oksidasyonunda Elektrokatalitik Aktivitesi

Süleyman Yalçınkaya, Didem Çakmak

Elektrokimyasal Olarak İndirgenmiş Grafen Oksit ve Poli(2,6- Piridindikarboksilik Asit) Modifiye Camsı Karbon Elektrot ile Hesperidin-Dsdna Tayini

Gözde Aydoğdu Tığ, Şule Pekyardımcı, Bülent Zeybek, Ecem Özlem Bolat

Folik Asit Konjuge Edilmiş PVP/Dekstran/ODA-MMT Nanokompozitlerin Sulu Dispersiyon Karışımlarından Üretilen Çok Fonksiyonlu Elektroeğrilmiş Biyouyumlu Nanofiber Kompozitler ve Bunların Vero Hücreleriyle Etkileşimi

Murat ŞİMŞEK, Zakir M.o. RZAYEV, Ulviya BUNYATOVA, Sevda KHALİLOVA, Mustafa TÜRK

$H_2O_2$ Uygulanan Sıçanlarda Yeni Karbonik Anhidraz Aktivatörleri

Ramazan Demirdağ, Ahmet Özkaya, Murat Koca, Zafer Şahin, Müslüm Kuzu, Veysel Çomaklı, Ugur Dardağan, Kader Uzun

Türk Çam Ballarının Mikroskobik ve GC-MS Analizi

Aslı ÖZKÖK, Kadriye SORKUN, Bekir SALİH

Ağır Metal Kirlilik Indeksinin Yüzey Sularına Uygulanması: Çamlıdere Örneği

Özlem TUNÇ DEDE

İz-Aşındırılmış Tekli Nano Membran Kullanarak Proteinlerin İzoelektrik Noktalarının Belirlenmesi

Kaan KEÇECİ

Kahverengi Alabalık Yavrularında Kroma Akut Maruz Kaldıktan Sonra Solungaç ve Karaciğer Dokularında Histolojik Değişiklikler ve Karbonik Anhidraz Aktivitesi Yanıtları

Yeliz DEMİR, Ertan ORUÇ, Ahmet TOPAL

Fitoremediasyon Yeşil Islah Yöntemi ile Ortamdan Ağır Metal Uzaklaştırılması

Ömer ELKIRAN