Fenolün Gerçek Zamanlı Tayini için Moleküler Baskılanmış Optik Sensörlerin Hazırlanması

Son yıllarda, canlılar ve halk sağlığı için önemli bir tehdit oluşturan fenol ve bileşiklerinin tespit edilmesi önem kazanmak - tadır. Bu çalışmada, fenolün tespiti için moleküler baskılama yöntemi temel alınarak fenol baskılanmış yüzey plazmon re - zonans (SPR) sensörler tasarlanmıştır. Fenol moleküllerine ait boşluklara sahip polimerik film hazırlanarak UV polimerizasyo - nu ile SPR sensör yüzeyinde oluşturulmuştur. 0.15 ile 10 nM arasındaki tayin aralığında en düşük saptama sınırı 0.022 nM’dir. Ayrıca, seçicilik katekolün yarışmacı ajan olarak seçilmiş ve seçicilik deneylerini gerçekleştirilmiştir. Genel olarak, moleküler baskılama yaklaşımı ile hazırlanan fenol baskılanmış SPR sensörünün fenol için oldukça hassas ve seçici olduğu bulunmuştur. Fenol baskılı SPR sensörleri, yüksek seçicilikleri, tekrar kullanılabilirliliği ve hızlı yanıtları özelliği ile mevcut fenol belirleme yöntemlerine alternatif yeni bir yöntem olarak kullanılmak düşünülmektedir.

Preparation of Molecularly Imprinted Optical Sensors for the Real Time Detection of Phenol

In recent years, it has become important to identify phenols and their compounds that pose an important threat to living things and public health. In this study, phenol imprinted surface plasmon resonance (SPR) sensors were designed based on molecular imprinted method for detection of phenol. Polymeric film with cavities of phenol molecules was prepared and formed on the SPR chip surface by UV polymerization. The limit of detection range from 0.15 to 10 nM was 0.022 nM. Furthermore, we performed the selectivity experiments, where catechol was chosen as competitor agent. Overall, phenol imprinted SPR sensor prepared by the molecular imprinting approach has been found to be highly sensitive and selective for phenol. Phenol imprinted SPR sensors are considered to be used as a new method for existing phenol determination methods with their high selectivity, repetitive use and fast responses.

___

  • 1. H. Zhang, L. Yang, B. Zhou, X. Wang, G. Liu, W. Liu, P. Wang, Investigation of biological cell-protein interactions using SPR sensor through laser scanning confocal imaging-surface plasmon resonance system, Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 121 (2014) 381-386.
  • 2. J. Buijs, G.C. Franklin, SPR-MS in functional proteomics, Brief. Funct. Genomic. Proteomic., 4 (2005) 39-47.
  • 3. W.M. Mullett, E.P. Lai, J.M. Yeung, Surface plasmon resonance-based immunoassays, Methods., 22 (2000) 77- 91.
  • 4. G. Krishnamoorthy, E.T. Carlen, A. Van Der Berg, R.B.M. Schasfoort, Surface plasmon resonance imaging based multiplex biosensor: integration of biomolecular screening detection and kinetics estimation, Sensor. Actuators B, 148 (2010) 511-521.
  • 5. A.S. Kushwaha, A. Kumar, R. Kumar, and S.K. Srivastava, A study of surface plasmon resonance (SPR) based biosensor with improved sensitivity, Photonics Nanostruct., 31 (2018) 99-106.
  • 6. S. Zeng, D. Baillargeat, H.P. Ho, and K.T. Yong, Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications, Chem. Soc. Rev., 43 (2014) 3426-3452.
  • 7. J.F. Masson, Portable and field-deployed surface plasmon resonance and plasmonic sensors, Analyst, 145 (2020) 3776.
  • 8. W.M.E.M.M. Daniyal, Y.W. Fen, N.I.M. Fauzi, H.S. Hashim, N.S.M. Ramdzan, N.A.S. Omar, Recent Advances in Surface Plasmon Resonance Optical Sensors for Potential Application in Environmental Monitoring, Sens. Mater., 32 (2020) 4191-4200.
  • 9. F.R. Caetano, E.A. Carneiro, D. Agustini, L.C.S. Figueiredo- Filho, C.E. Banks, M.F. Bergamini, L.H. Marcolino-Junior, Combination of electrochemical biosensor and textile threads: A microfluidic device for phenol determination in tap water, Biosens. Bioelectron., 99 (2018) 382-388.
  • 10. H. Li, C. Han, Sonochemical Synthesis of Cyclodextrin- Coated Quantum Dots for Optical Detection of Pollutant Phenols in Water, Chem. Mater., 20 (2008) 6053-6059.
  • 11. L. Wu, X. Lu, Dhanjai, Z. Wu, Y. Dong, X. Wang, S. Zheng, J. Chen, 2D transition metal carbide MXene as a robust biosensing platform for enzyme immobilization and ultrasensitive detection of phenol, Biosens. Bioelectron., 107 (2018) 69-75.
  • 12. X.H. Zhou, L.H. Liu, X. Bai, H.C. Shi, A reduced graphene oxide based biosensor for high-sensitive detection of phenols in water samples, Sens. Actuators B Chem., (2013) 661-667.
  • 13. L. Lu, L. Zhang, X. Zhang, S. Huan, G. Shen, R. Yu, A novel tyrosinase biosensor based on hydroxyapatite–chitosan nanocomposite for the detection of phenolic compounds, Anal. Chim. Acta, 665 (2010) 146-151.
  • 14. E. Bazrafshan, F.K. Mostafapour, H.J. Mansourian, Phenolic compounds: health effects and its removal from aqueous environments by low cost adsorbents, Health Scope., 2 (2013) 65-66.
  • 15. U.S. Environmental Protection Agency Toxicological Review Phenol. In: Support of summary information on integrated risk information system (IRIS), CAS No. 108-95-2: 104. 2002.
  • 16. C.L. Dang, Y. Lin, Detection of phenol by defective inorganic BN nanosheet: A DFT study, Inorg. Chem. Commun., 117 (2020) 107977.
  • 17. X.D. Lv, P. Gao, An optical sensor for selective detection of phenol via double cross-linker precipitation polymerization, RSC Adv, 10 (2020) 25402-25407.
  • 18. A. Puszkarewicz, J. Kaleta, D. Papciak, Adsorption of phenol from water on Natural Minerals, Ecol. Eng., 19 (2018) 132- 138.
  • 19. M.H. Aliabadi, N. Esmaeili, H.S. Jahromi, An electrochemical composite sensor for phenol detection in waste water, Appl. Nanosci., 10 (2020) 597-609.
  • 20. R. Wahab, F. khan, N. Ahmad, M. Alam, J. Ahmad, A.A. Al- Khedhairy, Rapid sensing response for phenol with CuO nanoparticles, colloids and surfaces a-physicochemical and engineering aspects, Colloids Surf. A 607 (2020) 125424.
  • 21. C.A. Arenal, B.E. Sample, Chapter 29:Wildlife toxicity assessment for phenol. In: Wildlife toxicity assessments for chemicals of military concern. Elsevier; 2015. p. 555-579.
  • 22. IARC, International Agency for Research on Cancer Phenol. In: IARC Monographs on the evaluation of the carcinogenic risk of chemicals to humans, World Health Organization, 47 (1989) 263-287.
  • 23. G.F. Abu-Alsoud, C.S. Bottaro, Porous thin-film molecularly imprinted polymer device for simultaneous determination of phenol, alkylphenol and chlorophenol compounds in water, Talanta 223 (2021) 121727.
  • 24. R. M. Kamel, A. Shahat, Z.M. Anwar, H.A. El-Kady, E.M. Kilany, Efficient dual sensor of alternate nanomaterials for sensitive and rapid monitoring of ultratrace phenols in sea water, J. Mol. Liq., 297 (2020) 111798.
  • 25. Y. Zhang, L. Qin, Y. Cui, W. Liu, X. Liu, Y. Yang, A hydrophilic surface molecularly imprinted polymer on a spherical porous carbon support for selective phenol removal from coking wastewater, New Carbon Mater., 35 (2020) 220-231.
  • 26. H. Setiyanto, S. Rahmadhani, S. Sukandar, V. Saraswaty, M.A. Zulfikar, N. Mufti, The performance of molecularly imprinted polymers (MIPs)-modified carbon paste electrode and its application in detecting phenol, Int. J. Electrochem. Sci., 15 (2020) 5477-5486.
  • 27. A. Gubin, P. Sukhanov, A. Kushnir, K. Shikhaliev, M. Potapov, E. Kovaleva, Monitoring of phenols in natural waters and bottom sediments: preconcentration on a magnetic sorbent, GC-MS analysis, and weather observations, Chem. Pap., 75 (2021) 1445-1456.
  • 28. L. Qi, R. Liang, W. Qin, Stimulus-responsive imprinted polymer-based potentiometric sensor for reversible Detection of neutral phenols, Anal. Chem., 92 (2020) 4284- 4291.
  • 29. A. Rico-Yuste, S. Carrasco, Molecularly imprinted polymer- based hybrid materials for the development of optical sensors, Polymer, 11 (2019) 1173.
  • 30. C. Alexander, H.S. Andersson, L.I. Andersson, R.J. Ansell, N. Kirsch, I.A. Nicholls, J. O’Mahony, M.J. Whitcombe, Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003, J. Mol. Recognit., 19 (2006) 106-180.
  • 31. J.E. Lofgreen, G.A. Ozin, Controlling morphology and porosity to improve performance of molecularly imprinted sol–gel silica, Chem. Soc. Rev., 43 (2014) 911-933.
  • 32. O.K. Castell, D.A. Barrow, A.R. Kamarudin, C.J. Allender, Current practices for describing the performance of molecularly imprinted polymers can be misleading and may be hampering the development of the field, J. Mol. Recognit., 24 (2011) 1115-1122
  • 33. L. Chen, S. Xu, J. Li, Recent advances in molecular imprinting technology: current status, challenges and highlighted applications, Chem. Soc. Rev., 40 (2011) 2922-2942.
  • 34. R. Schirhagl, Bioapplications for molecularly imprinted polymers, Anal. Chem., 86 (2013) 250-261.
  • 35. X. Zhou, W. Li, X. He, L. Chen, Recent advances in the study of protein imprinting, Sep. Purif. Rev., 36 (2007) 257-283.
  • 36. R. Schirhagl, Bioapplications for Molecularly Imprinted Polymers, Anal. Chem., 86 (2013) 250-261.
  • 37. S. Li, S. Cao, M. J. Whitcombe, S.A. Piletsky, Size matters: Challenges in imprinting macromolecules, Prog. Polym. Sci., 39 (2014) 145-163.
  • 38. L. Chen, X. Wang, W. Lu, X. Wua, J. Lia, Molecular imprinting: perspectives and applications, Chem. Soc. Rev. 45 (2016) 2137.
  • 39. M. Fizir, A. Richa, H. He, S. Touil, M. Brada, L. Fizir, A mini review on molecularly imprinted polymer based halloysite nanotubes composites: innovative materials for analytical and environmental applications, Rev. Environ. Sci. Biotechnol., 19 (2020) 241-258.
  • 40. Ş. Öncel, L. Uzun, B. Garipcan, A. Denizli, Synthesis of phenylalanine-containing hydrophobic beads for lysozyme adsorption, Ind. Eng. Chem. Res., 44 (2005)7049-7056.
  • 41. A. Derazshamshir, I. Göktürk, E. Tamahkar, F. Yılmaz, N. Sağlam, A. Denizli, Phenol removal from wastewater by surface imprinted bacterial cellulose nanofibres, Environ. Technol., 41 (2020) 3134-3145.
  • 42. V. Safran, I. Göktürk, A. Derazshamshir, F. Yılmaz, N. Sağlam, A. Denizli, Rapid sensing of Cu +2 in water and biological samples by sensitive molecularly imprinted based plasmonic biosensor, Microchem. J., 148 (2019) 141-150.
  • 43. U. Beker, B. Ganbold, H. Dertli, D.D. Gülbayir, Adsorption of phenol by activated carbon: Influence of activation methods and solution pH, Energy Convers. Manag., 51 (2010) 235-240.
  • 44. R.J. Umpleby, S.C. Baxter, Y. Chen, R.N. Shah, K.D. Shimizu, Characterization of molecularly imprinted polymers with the langmuir-freundlich isotherm, Anal. Chem., 73 (2001) 4584-4591.
  • 45. N. Bereli, D. Çimen, S. Hüseynli, A Denizli, Detection of amoxicillin residues in egg extract with a molecularly imprinted polymer on gold microchip using surface plasmon resonance and quartz crystal microbalance methods, J. Food Sci., 85 (2020) 4152-4160.
  • 46. Y. Saylan, F. Yılmaz, A. Derazshamshir, E. Yılmaz, A. Denizli, Synthesis of hydrophobic nanoparticles for real-time lysozyme detection using surface plasmon resonance sensor, J. Mol. Recognit., 30 (2017) e2631.
  • 47. F.A.A. Manan, W.W. Hong, J. Abdullah, N.A. Yusof, I. Ahmad, Nanocrystalline cellulose decorated quantum dots based tyrosinase biosensor for phenol determination, Mater. Sci. Eng. C, 99 (2019) 37-46.
  • 48. F.R. Caetano, E.A. Carneiro, D. Agustini, L.C.S. Figueiredo- Filho, C.E. Banks, M.F. Bergamin, L.H. Marcolino-Junior, Combination of electrochemical biosensor and textile threads: A microfluidic device for phenol determination in tap water, Biosens. Bioelectron., 99 (2018) 382-388.
  • 49. M.H. Aliabadi, N. Esmaeili, H.S. Jahromi, An electrochemical composite sensor for phenol detection in waste water, Appl. Nanosci., 10 (2020) 597-609.
  • 50. H.S. Hashim, Y.W. Fen, N.A.S. Omar, J. Abdullah, W.M.E.M.M. Daniyal, S. Saleviter, Detection of phenol by incorporation of gold modified-enzyme based graphene oxide thin film with surface plasmon resonance technique, Opt. Express, 28 (2020) 9738-9752.
  • 51. J.A. Jesila, N.M. Umesh, S.F. Wang, G. Mani, A.A. Alothman, R.A. Alshgari, An electrochemical sensing of phenolic derivative 4-Cyanophenol in environmental water using a facile-constructed Aurivillius-structured Bi2MoO6, Ecotoxicol. Environ. Saf., 208 (2021) 111701.
Hacettepe Journal of Biology and Chemistry-Cover
  • ISSN: 2687-475X
  • Yayın Aralığı: 4
  • Başlangıç: 1972
  • Yayıncı: Hacettepe Üniversitesi, Fen Fakültesi
Sayıdaki Diğer Makaleler

Sistein Tayini için İridyum Tabanlı Fluorimetrik Metot Geliştirilmesi

Özlem Biçen ÜNLÜER

Farmasötik Formülasyonlarda Levodopa ve Karbidopa Miktarının Belirlenmesi için Etkili ve Güvenilir bir HPLC Yönteminin Geliştirilmesi ve Validasyonu

İbrahim BULDUK, Süleyman GÖKÇE

Türkiye Tatlısularında Yeşil Kılıçkuyruk (Xiphophorus hellerii)’nin İlk ve Lepistes (Poecilia reticulata)’nın İlave Kaydı

Şerife Gülsün KIRANKAYA, F. Güler EKMEKÇİ

Sekiz çok Yıllık Reseda (Resedaceae) Türünün Çimlenmesi Üzerine Duman ve Sıcaklık Şokunun Etkisi

Gökhan ERGAN, Cansu ÜLGEN, Şinasi YILDIRIMLI, Çağatay TAVŞANOĞLU, Emre ÇİLDEN

Hemoglobinin Seçici Saflaştırılması için Bakteriyel Selüloz/Vinil Imidazol Bazlı Membranların Hazırlanması

Monireh BAKHSHPOUR, Adil DENİZLİ

SARS-CoV-2 Spike Protein Reseptör-Bağlanma Bölgesindeki Aminoasit Değişimlerinin Yapısal Analizi

Burcu Biterge SÜT

Fenolün Gerçek Zamanlı Tayini için Moleküler Baskılanmış Optik Sensörlerin Hazırlanması

Ali DERAZSHAMSHİR

Taze Kesilmiş Roka Salatasının (Eruca Sativa Mill.) Enzimatik Esmerleşmesi, Antioksidan Aktivitesi ve Toplam Fenolik Bileşik İçeriğine Farklı İnhbitörlerin Etkisi

Arzu Altunkaya DİNÇAY

Türkiye’den Hypericum thymopsis Boiss. (Hypericaceae) türünün Antioksidan Kapasitesi ve Uçucu Yağ Bileşimi

Turan ARABACI, Emine KOÇ

Ankara İli (Türkiye) Meloidae (Coleoptera) Familyası Üzerine Faunistik Çalışma

Muhammed Arif DEMİR, Mahmut KABALAK