CO2 Yakalamanın Biyokatalitik Absorpsiyon ve Ultrasonik-Destekli Desorpsiyon Performansının İncelenmesi

Sterik engelli amin sisteminin susuz çözeltisinin (2-amino-2-etil-1,3-propandiol (AEPD): 1-hekzanol) ardışık CO2 absorpsiyon-desorpsiyon performansı gaz-sıvı karıştırmalı hücre reaktöründe incelenmiştir. Farklı AEPD: 1-hekzanolkonsantrasyonları için absorpsiyon kapasitesi ve başlangıç absorpsiyon hızı 303 K ve 2 bar mutlak basınçta hesaplanmıştır.AEPD miktarının artırılması CO2 absorpsiyon kapasitesini arttırmıştır. Sabit miktarda karbonik anhidrazın (CA) CO2absorpsiyon performansı üzerindeki biyokatalitik etkisi de araştırılmış, ve CA enziminin toplam absorplanan CO2 miktarınıarttırdığı bulunmuştur. AEPD: 1-hekzanol ve CA ile aktifleştirilen AEPD: 1-hekzanolün CO2 yüklemesi sırasıyla 0.88 ve 0.97mol CO2/mol AEPD bulunmuştur. CO2 desorpsiyon deneyleri, 363 K ve 1.1 bar mutlak N2 basıncında aynı deney düzeneğininfarklı diziliminde gerçekleştirilmiştir. Ultrasonik ışınlamanın 0.1 g/L CA katalizli AEPD: 1-hekzanol sisteminin desorpsiyonperformansı üzerindeki etkisi de araştırılmıştır. Ultrasonik desteğin desorpsiyon süresini kısalttığı ve desorpsiyon hızınıarttırdığı gözlenmiştir. Ayrıca, AEPD:1-Hekzanol sisteminin, CA yokluğunda ve varlığındaki, rejenerasyonun etkinliği, yenidenkullanılabilirliği ve performans kaybı Fourier dönüşümü kızılötesi spektrometresi ile analiz edilmiştir.

Investigation of Biocatalytic Absorption and Ultrasound-Assisted DesorptionPerformance of CO2 Capture

The CO2 absorption-desorption performance of non-aqueous solutions comprising a sterically hindered amine system(2-amino-2-ethyl-1,3-propanediol (AEPD): 1-hexanol) was investigated in a gas-liquid stirred cell reactor undersequential absorption-desorption cycles. The absorption capacity and initial absorption rate were calculated for differentconcentrations of AEPD: 1-hexanol at 303 K and 2 bar absolute pressure. Increasing the amount of AEPD increased theCO2 absorption capacity. The biocatalytic effect of a constant amount of carbonic anhydrase (CA) on the CO2 absorptionperformance was also investigated, and the CA enzyme was found to increase the total amount of absorbed CO2. The CO2loading of AEPD: 1-hexanol and CA activated AEPD: 1-hexanol were 0.88 and 0.97 mol CO2/mol AEPD, respectively. CO2desorption experiments were performed in different sequences of the same experimental set-up at 363 K and 1.1 barabsolute N2 p ressure. T he e ffect o f u ltrasonic i rradiation o n t he d esorption p erformance o f 0 .1 g /L C A c atalyzed A EPD:1-hexanol system was also investigated. It was observed that ultrasonic assistance shortened the desorption time andenhanced the desorption rate. Furthermore, the effectiveness of regeneration, the reusability, and performance loss ofAEPD: 1-hexanol, in the presence and absence of CA, were analyzed by Fourier transform infrared spectrometry.

___

  • 1. R. Cassia, M. Nocioni, N. Correa-Aragunde, L. Lamattina, climate change and the impact of greenhouse gasses: CO2 and NO, friends and foes of plant oxidative stress, Front. Plant Sci., 9 (2018).
  • 2. G.C.e.i. IEA (2020), IEA, Paris https://www.iea.org/articles/ global-CO2-emissions-in-2019.
  • 3. T. Skytt, S.N. Nielsen, B.G. Jonsson, Global warming potential and absolute global temperature change potential from carbon dioxide and methane fluxes as indicators of regional sustainability - A case study of Jamtland, Sweden, Ecol. Indic., 110 (2020).
  • 4. L.M. Romeo, M. Bailera, Design configurations to achieve an effective CO2 use and mitigation through power to gas, J. CO2 Util., 39 (2020).
  • 5. J. Oexmann, A. Kather, Minimising the regeneration heat duty of post-combustion CO2 capture by wet chemical absorption: The misguided focus on low heat of absorption solvents, Int. J. Greenh. Gas. Con., 4 (2010) 36-43.
  • 6. N.E.L. Hadri, D.V. Quang, M.R.M. Abu-Zahra, Study of novel solvent for CO2 post-combustion capture, Enrgy. Proced., 75 (2015) 2268-2286.
  • 7. J.Y. Yang, W. Yu, T. Wang, Z.Z. Liu, M.X. Fang, Process Simulations of the Direct Non-Aqueous Gas Stripping Process for CO2 Desorption, Ind. Eng. Chem. Res., 59 (2020) 7121-7129.
  • 8. B. Aghel, S. Sahraie, E. Heidaryan, Comparison of aqueous and non-aqueous alkanolamines solutions for carbon dioxide desorption in a microreactor, Energy, 201 (2020).
  • 9. X.Y. Zhu, H.F. Lu, K.J. Wu, Y.M. Zhu, Y.Y. Liu, C.J. Liu, B. Liang, DBU-Glycerol Solution: A CO2 Absorbent with high desorption ratio and low regeneration energy, Environ. Sci. Technol., 54 (2020) 7570-7578.
  • 10. M.C. Ozturk, O.Y. Orhan, E. Alper, Kinetics of carbon dioxide binding by 1,1,3,3-tetramethylguanidine in 1-hexanol, Int. J. Greenh. Gas Con., 26 (2014) 76-82.
  • 11. O.Y. Orhan, H. Tankal, H. Kayi, E. Alper, Kinetics of CO2 capture by carbon dioxide binding organic liquids: Experimental and molecular modelling studies, Int. J. Greenh. Gas. Con., 49 (2016) 379-386.
  • 12. M. Ozkutlu, O.Y. Orhan, H.Y. Ersan, E. Alper, Kinetics of CO2 capture by ionic liquid-CO2 binding organic liquid dual systems, Chem. Eng. Process., 101 (2016) 50-55.
  • 13. O.Y. Orhan, C.S. Ume, E. Alper, The absorption kinetics of CO2 into ionic liquid-CO2 binding organic liquid and hybrid solvents, Green. Energy. Technol., (2017) 241-261.
  • 14. B.H. Lv, K.X. Yang, X.B. Zhou, Z.M. Zhou, G.H. Jing, 2-Amino- 2-methyl-1-propanol based non-aqueous absorbent for energy-efficient and non-corrosive carbon dioxide capture, Appl. Energ., 264 (2020).
  • 15. F. Bougie, D. Pokras, X.F. Fan, Novel non-aqueous MEA solutions for CO2 capture, Int. J. Greenh. Gas Con., 86 (2019) 34-42.
  • 16. C.X. Li, X.Q. Shi, S.F. Shen, Performance evaluation of newly developed absorbents for solvent-based carbon dioxide Capture. Energy & Fuels, 33 (2019) 9032-9039.
  • 17. P.V. Kortunov, M. Siskin, M. Paccagnini, H. Thomann, CO2 Reaction mechanisms with hindered alkanolamines: control and promotion of reaction pathways, Energ. Fuel., 30 (2016) 1223-1236.
  • 18. W. Conway, S. Bruggink, Y. Beyad, W.L. Luo, I. Melian- Cabrera, G. Puxty, P. Feron, CO2 absorption into aqueous amine blended solutions containing monoethanolamine (MEA), N,N-dimethylethanolamine (DMEA), N,N- diethylethanolamine (DEEA) and 2-amino-2-methyl-1- propanol (AMP) for post-combustion capture processes, Chem. Eng. Sci. 126 (2015) 446-454.
  • 19. S. Camino, F. Vega, L.M.G. Fernandez, M. Cano, J.A. Camino, B. Navarrete, Kinetic evaluation of sterically hindered amines under partial oxy-combustion conditions, J. Chem. Technol. Biotechnol., (2020).
  • 20. F. Bougie, M.C. Iliuta, Sterically Hindered Amine-Based Absorbents for the Removal of CO2 from Gas Streams. J. Chem. Eng. Data, 57 (2012) 635-669.
  • 21. S.J. Yoon, H. Lee, J.H. Yoon, J.G. Shim, J.K. Lee, B.Y. Min, H.M. Eum, Kinetics of absorption of carbon dioxide into aqueous 2-amino-2-ethyl-1,3-propanediol solutions, Ind. Eng. Chem. Res., 41 (2002) 3651-3656.
  • 22. M.P. Patil, P.D. Vaidya, Aqueous mixtures of AMP, HMDA-N,N ‘-dimethyl and TEG for CO2 separation: a study on equilibrium and reaction kinetics, Chem. Eng. Commun., (2019).
  • 23. N. Prasongthum, P. Natewong, P. Reubroycharoen, R. Idem, Solvent regeneration of a CO2-loaded BEA-AMP Bi-blend amine solvent with the aid of a solid bronsted Ce(SO4)(2)/ ZrO2 superacid catalyst, Energ. Fuel., 33 (2019) 1334-1343.
  • 24. M.P. Patil, P.D. Vaidya, Kinetics of CO2 Absorption into Aqueous AMP/HMDA/TEG Mixtures, Chemistryselect, 3 (2018) 195-200.
  • 25. S.K. Dash, A.N. Samanta, S.S. Bandyopadhyay, Simulation and parametric study of post combustion CO2 capture process using (AMP plus PZ) blended solvent, Int. J. Greenh. Gas Con., 21 (2014) 130-139.
  • 26. A.K. Saha, S.S. Bandyopadhyay, A.K. Biswas, Kinetics of absorption of CO2 into aqueous-solutions of 2-amino-2- methyl-1-oropanol, Chem. Eng. Scie., 50 (1995) 3587-3598.
  • 27. S. Kumar, M.K. Mondal, Selection of efficient absorbent for CO2 capture from gases containing low CO2, Korean J. Chem. Eng., 37 (2020) 231-239.
  • 28. S. Ullah, H. Suleman, M.S. Tahir, M. Sagir, S. Muhammad, A.G. Al-Sehemi, M.U.R. Zafar, F.A.A. Kareem, A.S. Maulud, M.A. Bustam, Reactive kinetics of carbon dioxide loaded aqueous blend of 2-amino-2-ethyl-1,3-propanediol and piperazine using a pressure drop method, Int. J. Chem. Kinet., 51 (2019) 291-298.
  • 29. L. Jaafari, B. Jaffary, R. Idem, Screening study for selecting new activators for activating MDEA for natural gas sweetening, Sep. Purif. Technol., 199 (2018) 320-330.
  • 30. O.Y. Orhan, E. Alper, Kinetics of carbon dioxide binding by promoted organic liquids, Chem. Eng. Technol., 38 (2015) 1485-1489.
  • 31. T. Sharma, S. Sharma, H. Kamyab, A. Kumar, Energizing the CO2 utilization by chemo-enzymatic approaches and potentiality of carbonic anhydrases: A review, J. Clean. Prod., 247 (2020).
  • 32. N. Cihan, O.Y. Orhan, The enhanced enzymatic performance of carbonic anhydrase on the reaction rate between CO2 and aqueous solutions of sterically hindered amines, Greenh. Gases, (2020).
  • 33. B. Liu, X. Luo, Z.W. Liang, W. Olson, H.L. Liu, R. Idem, P. Tontiwachwuthikul, The development of kinetics model for CO2 absorption into tertiary amines containing carbonic anhydrase, Aiche J., 63 (2017) 4933-4943.
  • 34. Y.Z. Wang, M.F. Li, Z.P. Zhao, W.F. Liu, Effect of carbonic anhydrase on enzymatic conversion of CO2 to formic acid and optimization of reaction conditions, J. Mol. Catal. B-Enzym., 116 (2015) 89-94.
  • 35. I. Iliuta, M.C. Iliuta, F. Larachi, Catalytic CO2 hydration by immobilized and free human carbonic anhydrase II in a laminar flow microreactor - Model and simulations, Sep. Purif. Technol., 107 (2013) 61-69.
  • 36. P. Mirjafari, K. Asghari, N. Mahinpey, Investigating the application of enzyme carbonic anhydrase for CO2 sequestration purposes, Ind. Eng. Chem. Res., 46 (2007) 921-926.
  • 37. J.R. Ying, D.A. Eimer, A. Mathisen, F. Brakstad, H.A. Haugen, Ultrasound intensify CO2 desorption from pressurized loaded monoethanolamine solutions. II. Optimization and cost estimation, Energy, 173 (2019) 218-228.
  • 38. X.K. Xing, C.B. Feng, Enhancing CO2 desorption from crude oil by ultrasound, Ultrasonics, 84 (2018) 74-80.
  • 39. O. Yuksel Orhan, Keles, Y., Yavuz Ersan, H., Alper, E., Ultrasound-assisted desorption of CO2 from carbon dioxide binding organic liquids, Energy Procedia 114 (2017) 66-71.
  • 40. K. Tanaka, H. Okawa, T. Fujiwara, T. Kato, K. Sugawara, Desorption of CO2 from low concentration monoethanolamine solutions using calcium chloride and ultrasound irradiation, Jpn. J. Appl. Phys., 54 (2015).
  • 41. P.V. Danckwerts, Reaction of CO2 with Ethanolamines, Chem. Eng. Sci., 34 (1979) 443-446.
  • 42. O.Y. Orhan, E. Alper, Kinetics of reaction between CO2 and ionic liquid-carbon dioxide binding organic liquid hybrid systems: Analysis of gas-liquid absorption and stopped flow experiments, Chem. Eng. Sci., 170 (2017) 36-47.
  • 43. O.Y. Orhan, M.C. Ozturk, A. Seker, E. Alper, Kinetics and performance studies of a switchable solvent TMG (1,1,3,3-tetramethylguanidine)/1-propanol/carbon dioxide system, Turk. J. Chem., 39 (2015) 13-24.
  • 44. H.X. Gao, Z.Y. Wu, H. Liu, X. Luo, Z.W. Liang, Experimental studies on the effect of tertiary amine promoters in aqueous monoethanolamine (MEA) solutions on the absorption/ stripping performances in post-combustion CO2 capture, Energ. Fuel., 31 (2017) 13883-13891.
  • 45. J. Im, S.Y. Hong, Y. Cheon, J. Lee, J.S. Lee, H.S. Kim, M. Cheong, H. Park, Steric hindrance-induced zwitterionic carbonates from alkanolamines and CO2: highly efficient CO2 absorbents, Energy Environ. Sci., 4 (2011) 4284-4289.