Bioengineering functional copolymers. IX. synthesis and characterization of stimuli-responsive poly(N-isopropylacrylamide-co-N-vinyl-2-pyrrolidone) and its Cu(II) complexes

Bioengineering functional copolymers. IX. synthesis and characterization of stimuli-responsive poly(N-isopropylacrylamide-co-N-vinyl-2-pyrrolidone) and its Cu(II) complexes

Radical copolymerization of N-isopropylacrylamide (NIPA) with N-vinyl-2-pyrrolidone (VP) were carried out with 2,2’- azobisisobutyronitrile (AIBN) as an intiator in N,N’-dimethylformamide solution at $65^ oC$ under nitrogen atmosphere. Cu(II)–copolymer macrocomplexes were prepared by incorporation of copolymers with copper sulfate in aqueous solution at $40^ oC$. Structure and composition of the obtained copolymers, and the formation of coordinated Cu(II)- complexes between amide VP unit and Cu(II) ions were studied by FTIR spectroscopy, DSC and TGA-DTG methods, as well as by the electrical conductivity measurements. Compositon of the copolymers synthesized in a wide range of monomer feed ratios were determined by FTIR and $^ 1H (^ {13}C)$ NMR–DEPT-135 spectroscopy. The monomer reactivity ratios were determined by Fineman-Ross, Kelen-Tüdös and non-linear regression methods. It was observed that studied monomer pair has some tendency to alternation in the chosen monomer feed ratios due to formation of intermolecular interaction through H-bonding and N→O=C coordination. The copolymers predominantly show amorphous structure while their Cu(II)–macrocomplexes exhibit crystalline phase. The conductive properties of the synthesized Cu(II)–poly(VP-co-NIPA) complexes was also discussed.The synthesized poly(NIPA-co-VP)s show temperature sensitiveness ($T _s$) and higher glass-transition temperature ($T _g$) and thermal stability, polyelectrolyte and stimuli-responsive (temperature- and pH-sensitive) behavior, and can be attributed to the class of bioengineering functional copolymers useful for application in various gene- and bioengineering processes, drug delivery systems, and biomacromolecule conjugations.

___

  • 1. Kofukuta, E. Adv. Polym. Sci. 1993, 110, 167- 176.
  • 2. Chen, J.-P.; Hsu, M.-Sh. J. Mol. Catal. B: Enzym. 1997, 2, 233-241.
  • 3. Okano, T. Adv. Polym. Sci. 1993, 110, 179-198.
  • 4. Miyajima, M.;Yoshida, M.; Sato, H.; Omichi, H.; Katakai, R.; Higuchi, W. I. Eur. Polym. J. 1994, 30, 827-831.
  • 5. Leroux, J.-C.; Roux, E.; Le Garrec, D.; Hong, K.; Drummond, D. C. J. Control. Release 2001, 72, 71-84.
  • 6. Kurisawa, M.; Yokoyama, M.; Okano, T. J. Control. Release 2000, 69, 127-137.
  • 7. Xue, W.; Champ, S.; Huglin, M. B. Polymer 2001, 42, 2247-2250.
  • 8. Snowden, M. J.; Thomas, D.; Vincent, B. Analyst. 1993, 118, 1367-1369.
  • 9. Morris, G. E.; Vincent, B.; Snowden, M. J. J. Coll. Interf. Sci. 1997, 190, 198-205.
  • 10. Ding, X. B.; Sun, Z. H.; Zhang, W. C.; Peng, Y. X.; Wan, G. X. J. Appl. Polym. Sci. 2000, 77, 2915-2920.
  • 11. Ringsdorf, H.; Venzmer. J.; Vinnik, F. M. Macromolecules 1991, 24, 1678-1686.
  • 12. Umeno, D.; Maeda, M. Anal. Sci. 1997, 13, 553-556.
  • 13. Dinçer, S.; Köseli, V.; Kesim, H.; Rzaev, Z. M. O.; Pişkin, E. Eur. Polym. J. 2002, 38, 2143- 2152.
  • 14. Kesim, H.; Rzaev, Z. M. O, Dinçer, S.; Pişkin, E. Polymer 2003, 44, 2897-909.
  • 15. Köseli, V.; Rzaev, Z. M. O.; Pişkin, E. J. Polym. Sci. A-1: Polym. Chem. 2003, 41, 1580-1593.
  • 16. Otake, K.; Inomata, H.; Konno, M.; Saita, S. Macromolecules 1990, 23, 83-88.
  • 17. Hirotsu, S. Macromolecules 1992, 25, 4445- 4447.
  • 18. Dong, C.; Hoffmann, A. S. J. Control. Rel. 1990, 13, 21-31.
  • 19. Chilkoti, A.; Chen, G.; Stayton, P. S.; Hoffman, A. S. Bioconjugate Chem, 1994, 5, 504-507.
  • 20. Chen, G.; Hoffman, A. S. Macromol. Rapid Commun. 1995, 16, 175-182.
  • 21. Tuncel, A.; Demirgöz, D.; Patir, S.; Pişkin, E. J. Appl. Polym. Sci. 2002, 84, 2060-2071.
  • 22. Bokias, G.; Hourdert, D. Macromolecules 2000, 33, 2929-2935.
  • 23. Bokias, G; Hourdert, D. Polymer 2001, 42, 6329-6337.
  • 24. Dinçer, S.; Tuncel, A.; Pişkin, E. Macromol. Chem. Phys. 2002, 203, 1460-1465.
  • 25. Türk, M.; Dinçer, S.; Yulug, G. I.; Pişkin, E. J. Control. Release 2004, 96:2 325-340.
  • 26. Bulmuş, V.; Patır, S.; Tuncel, A.; Pişkin, E. J. Control. Release 2001, 76, 265-274.
  • 27. Mark, H. F.; Bikales, N. M.; Overberger, C. G.; Menges, G., Eds.; Encyclopedia of Polymer Science and Engineering, Wiley-Interscience: New York, 1989; Vol. 17. 1989, p 198.
  • 28. Kirsh, Yu. K.Water Soluble Poly-N-vinylamides. Synthesis and Physicochemical Properties, Wiley: Chichester, 1998; p 233.
  • 29. Huglin, M. B.; Khairou, K. S. Eur. Polym. J. 1988, 24, 239-243.
  • 30. Brar, A. S.; Kumar, R. Polym. Int. 2002, 51, 519-529.
  • 31. Gatica, N.; Gargallo, L.; Radic, D. Polym. Int. 1998, 45, 285-290.
  • 32. Gatica, N.; Gargallo, L.; Radic, D. Eur. Polym. J. 2002, 38, 1371-1375.
  • 33. Veron, L.; Revol, M.; Mandransd, B.; Delair, T. J. Appl. Polym. Sci. 2001, 81, 3327-3337.
  • 34. Georgiev, G.; Konstantinov, C.; Kabaivanov, V. Macromolecules 1992, 25, 6302-6308.
  • 35. Ng, L.-T.; Jönsson, S.; Swami, S.; Lindgren, K. Polym. Int. 2002, 51, 1398-403.
  • 36. Reddy, B,.; Arshady, R.; George, M. Eur. Polym. J. 1985, 21, 511-602.
  • 37. Radic, D.; Gargallo, L. Macromolecules 1997, 30, 817-825.
  • 38. Bauduin, G.; Boutevin, B.; Belbachir, M.; Meghabar, R. Macromolecules 1995, 28, 1750- 1753.
  • 39. Senel, S.; Isik-Uruksoy, B.; Çiçek, H.; Tuncel, A. J. Appl. Polym. Sci. 1997, 64, 1775-1784.
  • 40. Anufrieva, E. V.; Gromova, R. A.; Kirsh, Yu. E.; Yanul, N. A.; Krakovyak, M. G.; Lushchik, V. B.; Pautov, V. D.; Sheveleva, T. V. Eur. Polym. J. 2001, 37, 323-328.
  • 41. Eeckman, F.; Moes, A. J.; Amighi, K. Eur. Polym. J. 2004, 40, 873-881.
  • 42. Rivas, B. L.; G. V. Seguel, G. V. Polyhedron 1999, 18, 2511.
  • 43. Salomone, J. C. Polymeric Material Encyclopedia, CRC Press: London, 1996, Vol.6, p.4102.
  • 44. Bulman, R. A. Struct Bonding 1987, 67, 91.
  • 45. Bryce-Smith, D. Chem Soc Rev 1973, 15, 93 .
  • 46. Albert, A. Selective Toxicity; Chapman & Hall: London, 1973.
  • 47. Lauffer, R. B. Chem Rev 1987, 87, 901.
  • 48. Sahni, S. K.; Reedijik, J. Coord Chem Rev 1984, 1, 59.
  • 49. Michalska, Z. M.; Strzelec, K.; Sobczak, J. W. J Mol Catalysis A, Chem 2000, 156, 91.
  • 50. Berslow, R.; Belvedere, S.; Gershell, L.; Leung, D. Pure Appl Chem 2000, 72, 333.
  • 51. Pekel, N.; ahiner, N.; Güven, O.; Rzaev, Z. M. O. Eur. Polym. J. 2001, 37, 2443-2451.
  • 52. Brandrup, J.; Immergut, E. H. Polymer handbook, 3nd ed.; John Wiley & Sons: New York, 1989; p II-274.
  • 53. Robinson, B. V.; Sallivan, F. M.; Borzelleca, J. F.; Schwartz, S. L. Poly(vinyl pyrrolidone). Levis Publishers: Michigan, 1990; p 209.
  • 54. Fineman, M.; Ross, S. D. J. Polym. Sci. 1950, 5, 259-265.
  • 55. Kelen, T.; Tüdös, F. J. Macromol. Sci. Chem. A: 1975, 9, 1-27.
  • 56. Dube, M.; Amin Sanayei, R.; Penlidis, A.; O’Driscoll, K. F.; Reilly, P. M. J. Polym. Sci. Part A-2: Polym. Chem. 1991, 29, 703-708.
  • 57. Odian, G. Principles of Polymerization, 3nd ed.; John Wiley & Sons Inc.: New York, 1991; p 480.
  • 58. Molineux, P. Water Soluble Synthetic Polymers; Properties and Behavior; CRC Press: Boca Raton, FL, 1983; Vol. 1, p 146.
  • 59. Salamova, Ü.; Masimov, A. A.; Rzaev, Z. M. O. Polymer 1996, 37, 2415-2421.
  • 60. Durand, A.; Hourdet, D. Polymer 2000, 41, 545-557.