Application of the MatK Gene sequences to some wild wheat species from Turkey

Application of the MatK Gene sequences to some wild wheat species from Turkey

The 3' region of the matK gene from 16 individuals belonging to four species, Triticum monococcum var. boeoticum, Triticum urartu, Triticum aestivum and Triticum dicoccoides, is used to investigate their evolutional relationships and the effects of ecological and climatical factors on the samples collected from different localities of Central and South-East regions of Anatolia. When sequenced regions were compared with matK. region of Triticum aestivum taken from the GeneBank, species can be divided into two groups. There are base differences at only two positions between these two groups.

___

  • 1.1.Williams, P.C. The world of wheat. In: Grains and oilseeds: handling marketing processing. Canadian International- Grains Institude, Winnipeg, Canada, p. 557-602, 1993.
  • 2.2.HİİU, W.K. and Alice, L.A. Evolutionary implications of matK indels in Poaceae. American Journal of Botany, 86(12), 1735-1741, 1999.
  • 3.Hsiao, C., Chatterton, N.J, Asay, K.H, Jansen, K.B. Phylogenetic relationships of the monogenomic species of the wheat tribe, Triticeae (Poaceae), inferred from nuclear rDNA (internal transcribed spacer) sequences, Genome, 38, 211-223, 1995.
  • 4.Lee, S. and Wen, J. A phylogenetic analysis of Prunus and the Amygdaloideae (Rosaceae) using ITS sequences of nuclear ribosomal DNA. American Journal of Botany, 88, 150-160, 2001.
  • 5.Becerra, J.X., Venable, D.L., Nuclear ribosomal DNA phylogeny and its implication for evolutionary trends in Mexican Bursera (Burseraceae), Am. J. Bot. 86, 1047-1057, 1999.
  • 6.Liang, H. And Hilu, K. W. Application of the matK gene sequences to grass systematics, Canadian Journal of Botany, 74,125-134, 1996.
  • 7.Olmstead, R.L.J, and Palmer, J.D. Chloroplast DNA systematics: a review of methods and data analysis. American Journal of Botany, 81,1205-1224, 1994.
  • 8.Johnson, L.A. and Douglas, E.S. MatK DNA sequences and phylogenetic reconstruction in Saxifragaceae s. str. Systematic Botany, 19(1), 143-156, 1994.
  • 9.Neuhaus, H., and Link, G. The chloroplast tRNALys (UUU) gene from mustard (Sinapis alba) contains a class II intron potentially coding for a maturase-related polypeptide. Current Genetics. 11, 251 -257, 1987.
  • 10.Hilu, W.K. and Liang, H. The matK gene: sequence variation and application in plant systematics. American Journal of Botany, 84(6), 830-839, 1997.
  • 11.Ma, Z.-Q. and Sorrells, M.E. Genetic analysis of fertility restoration in wheat using restriction fragment length polymorphisms. Crop Science. 35, 1137-1143, 1995.
  • 12.Hilu, W.K; and Alice, L.A. A Phylogenetic of Chloridoideae (Poaceae) based on matK sequences. Systematic Botany, 26(2), 386-405,2001.
  • 13.Sanger F., Nicklen S. and Coulson A.R. DNA sequences with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463-5467, 1977.
  • 14.Steele, K.P. and Vilgalys, R. Phylogenetic analyses of Polemoniaceae using nucleotide sequences of the plastid gene matK. Systematic Botany, 19(1), 126-142, 1994.
  • 15.Downie, S.R. and Kartz-Downie, D.S. A molecular phylogeny of Apiaceae subfamily Apioideae: Evidence from nuclear ribosomal DNA internal transcribed spacer sequences. American Journal of Botany 83(2), 234-251, 1996.
  • 16.Harding, T.M., Soltis, P.S. and Soltis, D.E. Diversification of the North American Shrub genus Ceanothus (Rhamnaceae): conflicting phylogenies from nuclear ribosomal DNA and chloroplast DNA. American Journal of Botany 87(1): 108-123,2000.