Molecular Characterization of Genetic Diversity Among T. dicoccoides and T. dicoccon Populations by RAPD-PCR Technique

It is necessary to characterize genetic diversity of the plant resources for their effective usage and protection. There are various well known marker systems to analyze and define the plant genomes. Randomly Amplified Polymorphic DNA RAPD is one of the efficiently used techniques for distinguishing the genetic variation among the wheat species as well as the other plants. The objective of this study is to characterize the genetic diversity of 11 wild emmer T. dicoccoides and 8 emmer T. dicoccon populations each of which is found in Turkey. For this purpose wheat samples were analyzed with 25 RAPD markers of which 20 were found to be informative. Of the total 178 amplification products, 85 were polymorphic. An average percentage of polymorphism was detected as 47.75%. Dendrograms were constructed using an unweighted pair-group method with arithmetical averages UPGMA . The UPGMA analysis revealed that the lowest similarity was between emmer wheat recorded as TUR 02456 and wild emmer wheat recorded as TUR 03399, whereas, the genetic distance between two emmer wheat which are recorded as TUR 03562 and TUR 03564 was the highest. Consequently, RAPD could clearly assessed the genetic diversity at inter and intraspecific levels and these species can be considered as valuable gene resources for future breeding and conservation programs.

___

  • Salamini, F., Özkan, H., Brandolini, A., Schafer–Pregl, R., Martin, W., Genetics and geography of wild cereal domestication in the Near East. Nature Rev. Gen., 3, 429, 2002.
  • Van-Zeist, W., Wasylikowa, K., Behre, K.H. Progress in Old World Palaeoethnobotany. Balkema, Rotterdam, The Netherlands, 1991.
  • FAO FAOSTAT Agriculture Database. Retrieved from http://apps.fao.org/cgi–bin/nph db.pl?subset=agriculture, 2000.
  • FAO, United Nations Statistics Division, Statistical Year Book 2005-2006. United Nations, Rome, 2006.
  • Kimber, G., Genomic relationships in Triticum and the availability of alien germplasm. In: Biodiversity and Wheat Improvement. A.B. Damania (Ed.) John Wiley & Sons, Baffinslane, Chichester, UK, 9-16, 1993.
  • Asins, M.J., Carbonell, E.A., A comparative study of variability and phylogeny of Triticum species. 1. Intra- specific variability. Theor. Appl. Genet., 72, 551, 1986.
  • Joshi, C., Nguyen, H.T., Application of the random amplified polymorphic DNA technique for the detection of polymorphism among wild and cultivated tetraploid wheats. Genome, 36(3), 602, 1993.
  • Strivastava, J.P., Damania, A.B., Use of collections in cereal improvement in semi-arid areas. In: The Use of Plant Genetic Resources. A.H.D. Brown et al. (Eds.) Cambridge University Press, Cambridge, UK. 1989.
  • Diamond, J. Location, location, location: the first farmers. Science, 278, 1243, 1997.
  • Nesbit, M., Samuel, D., Wheat domestication: archaebotanical evidence. Science, 279, 1433, 1998.
  • Lev–Yadun, S., Gopher, A., Abbo, S., The cradle of agriculture. Science, 288, 1602, 2000.
  • Özkan, H., Brandolini, A., Pozzi, C., Effgen, S., Wunder, J., Salamini, F., A reconsideration of the domestication geography of tetraploid wheats, Theor. Appl. Genet. ,110, 1052, 2005.
  • Dubcovsky, J., Dvorak, J., Genome plasticity a key factor in the success of polyploid wheat under domestication. Science, 139, 1862, 2007.
  • Tahir, M., Pashayani, H., Transfer of agronomic traits from wild Triticum species to T. turgidum L. var. durum. in Wheat Genetic Resources: Meeting Diverse Needs. J.P. Srivastava, A.B. Damania (Eds.) John Wiley and Sons, New York, 317, 1990.
  • Aagaard, E.J., Krutovskii, V.K., Strauss, H.S., RAPDs and allozymes exhibit similar levels of diversity and differentiation among populations and races of Douglas-fir. Heredity, 81(1), 69, 1998.
  • Flavell, R.B., D’Dell, M., Sharp, P., Nevo, E., Beiles, A., Variation in the intergenic spacer of ribosomal DNA of wild wheat, Triticum dicoccoides, in Israel, Mol. Biol. Evol., 3, 547, 1986.
  • Fahima, T., Sun, G.L., Beharav, A., Krugman, T., Beiles, A., Nevo, E. RAPD polymorphism of wild emmer wheat populations, Triticum dicoccoides, in Israel, Theor. Appl. Genet. 98, 434, 1999.
  • Li, Y.C., Fahima, T., Beiles, A., Korol, A.B., Nevo, E., Microclimatic stress and adaptive DNA differentiation in wild emmer wheat Triticum dicoccoides, Theor. Appl. Genet., 98, 873, 1999.
  • Li, Y.C., Fahima, T., Peng, J.H., Röder, M.S., Kirzhner, V.M., Beiles, A., Korol, A.B., Nevo, E., Edaphic microsatellite DNA divergence in wild emmer wheat, Triticum dicoccoides, at a microsite: Tabigha, Israel, Theor. Appl. Genet., 101, 1029, 2000.
  • Li, Y.C., Fahima, T., Peng, J.H., Röder, M.S., Kirzhner, V.M., Beiles, A., Korol, A.B., Nevo, E., Microsatellite diversity correlated with ecological–edaphic and genetic factors in three microsites of wild emmer wheat in north Israel, Mol. Biol. Evol., 17, 851, 2000.
  • Fahima, T., Röder, M.S., Wandhake, K., Nevo, E., Microsatellite polymorphism of wild emmer wheat populations, Triticum dicoccoides, in Israel., Theor. Appl. Genet., 104(1),17, 2002.
  • Corazza, L., Pasquini, M., Perrino, P., Resistance to rusts and powdery mildew in some strains of Triticum monococcum L. and Triticum dicoccum Schubler cultivated in Italy, Genet. Agrar., 40, 243, 1986.
  • Damania, A.B., Hakim, S., Moualla, M.Y., Evaluation of variation in Triticum dicoccum for wheat improvement in stress environments. Hereditas, 116, 163, 1992.
  • Mondini, L., Grausgruber, H., Porceddu, E., Pagnotta, M.A., Assessment of genetic diversity in European emmer wheat populations. Retrieved from http://hdl.handle.net/2123/ 3382, 2008.
  • Hammer, K., Perrino, P., Further information on faro (Triticum monococcum L. and Triticum dicoccon Schrank) in South Italy, Kulturpflanze, 32, 143, 1984.
  • Peña-Chocarro, L., In situ conservation of hulled wheat species: the case of Spain. In: S. Padulosi, K. Hammer, J. Heller (Eds.), Hulled Wheats. Promoting the conservation and use of underutilized and neglected crops. Proc. 1st Int. Workshop on Hulled Wheats, July, 21-22, 1995. Castelvecchio Pascoli, Lucca, Italy, pp. 129-46, 1996.
  • Hammer, K., Filatenko, A.A., Al-Khanjari, S., Al-Maskri, A.Y., Buerkert, A., Emmer (Triticum dicoccon Schrank) in Oman, Genet. Resour. Crop. Evol., 51, 111, 2004.
  • Pagnotta, M.A., Mondini, L., Codianni, P., Fares, C., Agronomical, quality, and molecular characterization of twenty Italian emmer wheat (Triticum dicoccon) accessions, Genet. Resour. Crop. Evol. 56, 299, 2009.
  • Teklu, Y., Hammer, K., Röder, M.S., Simple sequence repeats markers polymorphism in emmer wheat (Triticum dicoccon Schrank): analysis of genetic diversity and differentiation, Genet. Resour. Crop. Evol. 54, 543, 2007.
  • Serpen, A., Gokmen, V., Karagoz, A., Koksel, H., Phytochemical quantification and total antioxidant capacities of Emmer (Triticum dicoccon Schrank) and Einkorn (Triticum monococcum L.) Wheat landraces, J. Agric. Food. Chem., 56, 7285, 2008.
  • Pagnotta, M.A., Mondini, L., Porfiri, O., Porceddu, E., Genetic diversity, assessed by molecular markers, present within and between Italian landraces of emmer wheat (Triticum dicoccum Schübler). Proc. 10th International Wheat Genetics Symposium, September 1-6, Paestum, Italy, 2, 509, 2003.
  • Pagnotta, M.A., Laghetti, G., Mondini, L., Codianni, P., Volpe, N., Savo Sardaro, M.L., Riefolo, C., Perrino, P., Fares, C., Assessment of genetic diversity and characterization of Italian emmer wheat (Triticum dicoccum Schübler) populations. Proc. 10th International Wheat Genetics Symposium, September 1-6, Paestum, Italy, 2, 506, 2003.
  • Vavilov, N.I., The Linnaean species as a system. Bull. Appl. Bot. Genet. Sel., 26(3), 109, 1931.
  • Hulbert, S.H., Bennetzen, J.L., Recombination at the Rp1 locus of maize, Mol. Gen. Genet., 226, 377, 1991.
  • Rholf, F.J., NTSYS-pc. Numerical taxonomy and multivariate analysis system: version 2.01. Applied Biostatistics, New York, 2000.
  • Pujar, S., Tamhankar, S.A., Rao, V.S., Gupta, V.S., Naik, S., Ranjekar, P.K., Arbitrarily primed PCR based diversity assessment reflects hierarchical grouping of Indian tetraploid wheat genotypes. Theor. Appl. Genet. 99, 868- 76, 1999.
  • Cao, W., Scoles, G., Huci, P., Chibbar, R.N., Phylogenetic relationships of five morphological groups of hexaploid wheat (T. aestivum L. Em Thell.) based on RAPD analysis, Genome, 43, 724, 2000.
  • Nagaoka, T., Ogihara, Y., Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers, Theor. Appl. Genet. 94, 597, 1997.
  • Castagna, R., Gnocchi, S., Perenzin, M., Heun, M., Genetic variability of the wild diploid wheat Triticum urartu revealed by RFLP and RAPD markers. Theor. Appl. Genet. 94, 424, 1997.
  • Nevo, E., Beiles, A., Zohary, D., Genetic resources of wild barley in the Near East: Structure, evolution and application in breeding, Bull. J. Lin. Soc., 27, 355, 1986.
  • Erskine, W., Adham, Y., Holly, L., Geographic distribution of variation in quantitative traits in a world lentil collection. Euphytica, 43, 97, 1989.
  • Vierling, R., Nguyen, H.T., Use of RAPD markers to determine the genetic relationships of diploid wheat genotypes, Theor. Appl. Genet. 84, 835, 1992.
  • Aliyev, R.T., Abbasov, M.A., Mammadov, A.C., Genetic identification of diploid and tetraploid wheat species with RAPD markers, Turk. J. Biol., 31, 173, 2007.
  • Waines, J.G., Bernhart, D., Biosystematic research in Aegilops and Triticum, Hereditas, 116, 207, 1992.
  • Sun, Q., Ni, Z., Liu, Z., Gao, J., Huang, T., Genetic relationships and diversity among Tibetan wheat, common wheat and European spelt wheat revealed by RAPD markers, Euphytica, 99, 205, 1998.
  • Karaca, M., Izbirak, A, Comparative analysis of genetic diversity in Turkish durum wheat cultivars using RAPD and ISSR markers, J. Food Agr. Env., 6(3-4), 219, 2008.
  • Karagöz, A., Pilanalı, L., Polat, T., Agromorphological characterization of some wild wheat (Aegilops L. and Triticum L.) species, Turk. J. Agric. For., 30, 387, 2006.
  • Pflüger, L.A., Martin, L.M., Alvarez, J.B., Variation in the HMW and LMW glutenin subunits from Spanish accessions of emmer wheat (Triticum turgidum ssp. dicoccum Schrank), Theor. Appl. Genet., 102, 767, 2001.
  • Behall, K.M., Scholfield, D.J., Hallfrisch, J., Whole-grain diets reduce blood pressure in mildly hypercholesterolemic men and women, J. Am. Diet. Assoc., 106, 1445, 2006.
  • Fung, T.T., Hu, F.B., Pereira, M.A., Liu, S., Stampfer, M.J., Colditz, G.A., Willett, W.C., Whole-grain intake and the risk of type 2 diabetes: a prospective study in men, Am. J. Clin. Nutr., 76, 535, 2002.
  • Montonen, J., Knekt, P., Jarvinen, R., Aromaa, A., Reunanen, A., Whole-grain and fiber intake and the incidence of type 2 diabetes, Am. J. Clin. Nutr., 77, 622, 2003.
  • Chatenoud, L., Tavani, A., La Vecchia, C., Jacobs, D.R., Negri, E., Levi, F., Franceschi, S., Whole grain food intake and cancer risk, Int. J. Cancer, 77, 24, 1998.
  • Kasum, C.M., Nicodemus, K., Harnack, L.J. Jr., Folsom, A.R., Whole grain intake and incident endometrial cancer: the Iowa Women’s health study, Nutr. Cancer, 39, 180, 2001.
  • Larsson, S.C., Giovannucci, E., Bergkvist, L., Wolk, A., Whole grain consumption and risk of colorectal cancer: a population based cohort of 60,000 women, Br. J. Cancer, 92, 1803, 2005.
  • Capocchi, A., Fontanini, D., Muccilli, V., Cunsolo, V., Saviozzi, F., Saletti, R., et al. NsLTP1 and NsLTP2 isoforms in soft wheat (Triticum aestivum cv. Centauro) and faro (Triticum dicoccon Schrank), Br. J. Agric. Food Chem., 53, 7976, 2005.