Yüzey modifikasyonu yardımıyla CdS toz bazlı hibrit güneş pillerinde performans artışı

CdS-tabanlı hibrit güneş pillerinde, CdS'nin yüzey modifikasyon etkileri organik Eosin-Y, indolin D205 ve Ru bazlı N719 ve N3 boyaları vasıtasıyla incelendi. CdS örneklerini İndiyum-Kalay Oksit (ITO) kaplı cam altlıklar üzerinde büyütmek için, sırasıyla kimyasal banyo çökeltme (CBD) ve doktor bıçak yöntemleri kullanıldı. Boya kaplamaları olan ve olmayan CdS örneklerinin yüzeyine P3HT materyali, spin kaplama (spin-coater) cihazı yardımıyla kaplandı. Devamında Ag pasta, hibrit güneş pillerini tamamlamak için P3HT yüzeyine çökeltildi. Yapısal analiz, CdS tozlarının kübik yapıda ve (111) tercihli yönelime sahip olduğunu gösterdi. Morfolojik analiz, CdS tozlarının hiyerarşik morfolojide olduğunu ve morfolojinin hem N3 boyası hem de P3HT tabakasının çökeltilmesiyle birlikte taneli ve gözenekli yapıya döndüğünü gösterdi. Soğurma (absorbsiyon) grafikleri, Eosin-Y boya kaplamasının CdS örneklerinin soğurma değerinde bir artışa yol açtığını gösterdi. Boya kaplamasının, CdS tabanlı heteroyapının fotolüminesans şiddetinde azalma oluşturması, etkin bir eksiton ayrışması elde edildiğini ortaya koymaktadır. Hibrit güneş pillerinin akım yoğunluğu-voltaj (J-V) karakteristiklerinden, Eosin-Y modifikasyonlu güneş pilinin veriminin % 0.135 olarak en yüksek değerde olduğu tespit edildi. Bu durum, Eosin-Y boyası ile yapılan yüzey modifikasyonunun, yük ayrışmasında oluşturduğu iyileşmeden dolayı, CdS ve P3HT ikili yapısının arasında daha iyi bir ara yüzey teması sağladığını ispatlamaktadır.

IImproved performance of CdS powder-based hybrid solar cells through surface modification

The effects of surface modification of CdS through organic Eosin-Y, indoline D205, and Ru-based complex N719 and N3 dyes on CdS-based hybrid solar cells were studied. Chemical bath deposition (CBD) and doctor blade methods were in turn employed to fabricate the CdS specimens on Indium-Tin Oxide (ITO) covered glass substrates. P3HT material with and without dye coatings was covered through a spin-coater on the surface of CdS specimens. Ag paste was then deposited on the surface of P3HT to obtain hybrid solar cells. Structural analysis indicated that CdS powders showed a cubic growth with the preferred orientation of (111). Morphological analysis demonstrated that CdS powders exhibited hierarchical morphology and the morphology turned to granular structure with some porosity upon deposition of both N3 dye and P3HT layers. Absorption plots indicated that Eosin-Y dye loading led to a rise in the absorbance values of CdS specimens. After dye loading, photoluminescence data of CdS-based heterostructure illustrated a decrement in the luminescence intensity, implying that effective exciton dissociation was obtained. Current density-voltage (J-V) characteristics of the hybrid solar cells depicted that the best overall efficiency was observed for Eosin-Y-modified cell as 0.135%. This proved that surface modification by Eosin-Y dye led to a better interfacial contact between CdS and P3HT bilayer due to the enhancement in the charge separation.

___

  • Chen, F., Qiu W., Chen, X., Yang, L., Jiang, X., Wang, M. and Chen, H. (2011). Large-scale fabrication of CdS nanorod arrays on transparent conductive substrates from aqueous solutions. Solar Energy, 85(9), 2122-2129. https://doi.org/10.1016/j.solener.2011.05.020.
  • Cortina, H., Pineda, E. and Hu, H. (2012). Measurement of charge carrier recombination rates in planar hybrid CdS/poly3-octylthiophene solar cells. Solar Energy, 86(4), 1004-1009. https://doi.org/10.1016/j.solener.2011.06.003.
  • Greenham, N. C., Peng, X. and Alivisatos, A. P. (1997). Charge separation and transport in conjugated polymer/cadmium selenide nanocrystal composites studied by photoluminescence quenching and photoconductivity. Synthetic Metals, 84(1–3), 545-546. https://doi.org/10.1016/s0379-6779(97)80852-1.
  • Jabeen, U., Adhikari, T., Pathak, D., Shah, S. M. and Nunzi, J. M. (2018). Structural, optical and photovoltaic properties of P3HT and Mn-doped CdS quantum dots based bulk heterojunction hybrid layers. Optical Materials, 78, 132-141. https://doi.org/10.1016/j.optmat.2018.02.019.
  • Kang, M., Kim, S. W. and Park, H. Y. (2018). Optical properties of TiO2 thin films with crystal structure. Journal of Physics and Chemistry of Solids, 123, 266-270. https://doi.org/10.1016/j.jpcs.2018.08.009.
  • Khallaf, H., Oladeji, I. O., Chai, G. and Chow, L. (2008). Characterization of CdS thin films grown by chemical bath deposition using four different cadmium sources. Thin Solid Films, 516(21), 7306-7312. https://doi.org/10.1016/j.tsf.2008.01.004.
  • Kim, J., Choi, H., Nahm, C., Moon, J., Kim, C., Nam, S., Jung, D. -R. and Park, B. (2011). The effect of a blocking layer on the photovoltaic performance in CdS quantum-dot-sensitized solar cells. Journal of Power Sources, 196(23), 10526-10531. https://doi.org/10.1016/j.jpowsour.2011.08.052.
  • Ko, Y., Kim, Y., Kong, S. Y., Kunnana, S. C. and Jun, Y. (2018). Improved performance of sol–gel ZnO-based perovskite solar cells via TiCl4 interfacial modification. Solar Energy Materials and Solar Cells, 183, 157-163. https://doi.org/10.1016/j.solmat.2018.04.021.
  • Kumar, N. and Dutta, V. (2014). Fabrication of polymer/cadmium sulfide hybrid solar cells [P3HT:CdS and PCPDTBT:CdS] by spray deposition. Journal of Colloid and Interface Science, 434, 181-187. https://doi.org/10.1016/j.jcis.2014.07.047.
  • Li, C., Wang, F., Chen, Y., Wu, L., Zhang, J., Li, W., He, X., Li, B. and Feng, L. (2018). Characterization of sputtered CdSe thin films as the window layer for CdTe solar cells. Materials Science in Semiconductor Processing, 83, 89-95. https://doi.org/10.1016/j.mssp.2018.04.022.
  • Lim, E. L., Yap, C. C., Yahaya, M. and Salleh, M. M. (2012). ZnO nanorod arrays coated with Eosin-Y at different concentrations for inverted bulk heterojunction organic solar cells. Advanced Materials Research, 501, 214-218. https://doi.org/10.4028/www.scientific.net/AMR.501.214.
  • Lim, E. L., Yap, C. C., Yahaya, M. and Salleh, M. M. (2013). Enhancement of ZnO nanorod arrays-based inverted type hybrid organic solar cell using spin-coated Eosin-Y. Semiconductor Science and Technology, 28, 045009-045015. https://doi.org/10.1088/0268-1242/28/4/045009.
  • Lin, Y. -Y., Chu, T. -H., Li, S. -S., Chuang, C. -H., Chang, C. -H., Su, W. -F., Chang, C. -P., Chu, M. -W. and Chen, C. -W. (2009). Interfacial nanostructuring on the performance of polymer/TiO2 nanorod bulk heterojunction solar cells. Journal of the American Chemical Society, 131, 3644-3649. https://doi.org/10.1021/ja8079143.
  • Liu, H., Zhang, K., Jing, D., Liu, G. and Guo, L. (2010). SrS/CdS composite powder as a novel photocatalyst for hydrogen production under visible light irradiation. International Journal of Hydrogen Energy, 35(13), 7080-7086. https://doi.org/10.1016/j.ijhydene.2010.01.028.
  • Luo, S., Shen, H., Zhang, Y., Li, J., Oron, D. and Lin, H. (2016). Inhibition of charge transfer and recombination processes in CdS/N719 co-sensitized solar cell with high conversion efficiency. Electrochimica Acta, 191, 16-22. https://doi.org/10.1016/j.electacta.2016.01.055.
  • Nan, Y. -X., Li, J. -J., Fu, W. -F., Qiu, W. -M., Zuo, L. -J., Pan, H. -B., Yan, Q. -X., Chen, X. -G. and Chen, H. -Z. (2013). Performance enhancement of CdS nanorod arrays/P3HT hybrid solar cells via N719 dye interface modification. Chinese Journal of Polymer Science, 31(6), 879-884. https://doi.org/10.1007/s10118-013-1274-z.
  • Patterson, A.L. (1939). The Scherrer formula for X-ray particle size determination. Physical Reviews, 56 (10), 978. https://doi.org/10.1103/PhysRev.56.978.
  • Pei, J., Feng, K., Wei, Y., Zhao, X., Hao, Y., Li, Y., Sun, B., Chen, S. and Lv, H. (2018). Influence of organic interface modification layer on the photoelectric properties of ZnO-based hybrid solar cell. Journal of Photochemistry and Photobiology A, Chemistry, 364, 551-557. https://doi.org/10.1016/j.jphotochem.2018.06.042.
  • Ravichandran, K. and Porkodi, S. (2018). Addressing the issue of under-utilization of precursor material in SILAR process: Simultaneous preparation of CdS in two different forms – Thin film and powder. Materials Science in Semiconductor Processing, 81, 30-37. https://doi.org/10.1016/j.mssp.2018.02.037.
  • Sonavane, D. K., Jare, S. K., Kathare, R. V., Bulakhe, R. N. and Shim, J. J. (2018). Chemical synthesis of PbS thin films and its physicochemical properties. Materialtoday: Proceedings, 5(2–2), 7743-7747. https://doi.org/10.1016/j.matpr.2017.11.451.
  • Su, B., Wei, M. and Choy, K. L. (2001). Microstructure of nanocrystalline CdS powders and thin films by Electrostatic Assisted Aerosol Jet Decomposition/Deposition method. Materials Letters, 47(1–2), 83-88. https://doi.org/10.1016/S0167-577X(00)00216-0.
  • Sun, W., Sun, K., Peng, T. Y., You, S., Liu, H., Liang, L., Guo, S. and Zhao, X. -Z. (2014). Constructing hierarchical fastener-like spheres from anatase TiO2 nanosheets with exposed {001} facets for high-performance dye-sensitized solar cells. Journal of Power Sources, 262, 86-92. https://doi.org/10.1016/j.jpowsour.2014.03.086.
  • Tang, S., Tang, N., Meng, X., Huang, S. and Hao, Y. (2016). Enhanced power efficiency of ZnO based organic/inorganic solar cells by surface modification. Physica E: Low-dimensional Systems and Nanostructures, 83, 398-404. https://doi.org/10.1016/j.physe.2016.03.031.
  • Xia, C., Wang, N. and Kim, X. (2011). Mesoporous CdS spheres for high-performance hybrid solar cells. Electrochimica Acta, 56(25), 9504-9507. https://doi.org/10.1016/j.electacta.2011.08.047.
  • Xia, H., Zhanga, T., Wang, D., Wang, J. and Liang, K. (2013). Composite interfacial modification in TiO2 nanorod array/poly(3-hexylthiophene) hybrid photovoltaic devices. Journal of Alloys and Compounds, 575, 218-222. https://doi.org/10.1016/j.jallcom.2013.04.006.
  • Yılmaz, S. (2015). The investigation of spray pyrolysis grown CdS thin films doped with flourine atoms. Applied Surface Science, 357(A), 873-879. https://doi.org/10.1016/j.apsusc.2015.09.098.
  • Yılmaz, S., Atasoy, Y., Tomakin, M. and Bacaksız, E. (2015). Comparative studies of CdS, CdS:Al, CdS:Na and CdS:(Al–Na) thin films prepared by spray pyrolysis. Superlattices and Microstructures, 88, 299-307. https://doi.org/10.1016/j.spmi.2015.09.021.
  • Yılmaz, S., Polat, İ., Tomakin, M., Ünverdi, A. and Bacaksız, E. (2019). Enhanced efficiency of CdS/P3HT hybrid solar cell via interfacial modification. Turkish Journal of Physics, 43(1), 116-125. https://doi.org/10.3906/fiz-1810-21.
  • Yılmaz, S., Töreli, S. B., Polat, İ., Olgar, M. A., Tomakin, M. and Bacaksız, E. (2017). Enhancement in the optical and electrical properties of CdS thin films through Ga and K co-doping. Materials Science in Semiconductor Processing, 60, 45-52. https://doi.org/10.1016/j.mssp.2016.12.016.
  • Yılmaz, S., Ünverdi, A., Tomakin, M., Polat, İ. and Bacaksız, E. (2019). Surface modification of CBD-grown CdS thin films for hybrid solar cell applications. Optik, 185, 256-263. https://doi.org/10.1016/j.ijleo.2019.03.156.
  • Zhong, M., Yang, D., Zhang, J., Shi, J., Wang, X. and Li, C. (2012). Improving the performance of CdS/P3HT hybrid inverted solar cells by interfacial modification. Solar Energy Materials and Solar Cells, 96, 160-165. https://doi.org/10.1016/j.solmat.2011.09.041.
  • Zhong, P., Que, W. X., Zhang, J., Yuan, Y., Liao, Y. L., Yin, X. T., Kong, L. B. and Hu, X. (2014). Enhancing the performance of poly(3-hexylthiophene)/ZnO nanorod arrays based hybrid solar cells through incorporation of a third component. Science China Physics, Mechanics & Astronomy, 57(7), 1289-1298. https://doi.org/10.1007/s11433-013-5213-3.
Gümüşhane Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2011
  • Yayıncı: GÜMÜŞHANE ÜNİVERSİTESİ