Temper haddelemede kalınlık boyunca artık gerilme dağılımı açısından optimum ezme oranının belirlenmesi

Yüzeyinde basma gerilmeleri içeren malzemeler, yorulma hasarlanmalarına, çatlamaya ve aşınmaya karşı dayanıklıdır. Yüzeydeki bu basma gerilmeleri temper haddeleme ile oluşturulabilir. Temper haddelemeden beklenen faydayı elde etmek için haddeleme işlemi uygun bir ezme oranında yapılmalıdır. Şerit yüzeyine düzgünlük ve pürüzlük kazandırmak için genellikle %1'lik ezme oranı uygulanır ve bu ezme miktarı süreksiz akma olayını ortadan kaldırmak için yeterlidir. Bu çalışmada, 2,5 mm kalınlığındaki düşük karbonlu çelik sac (DC01 kalite) numuneler yaklaşık 600°C'de 5 dakika tavlanmış, ardından oda sıcaklığında çeşitli ezme oranlarında temper haddelemeye tabi tutulmuş ve haddelemeden dolayı kalınlık boyunca oluşan artık gerilmeler incelenmiştir. Bu çalışma, yüzeyde basma gerilmeleri oluşturmak için %1'lik ezme oranının yetersiz olduğunu, bunun ancak %1,5'lik bir oran ile sağlanabileceğini ortaya koymuştur. Ezme oranı %1,8'e çıkarıldığında, yüzeyde basma gerilmeleri ile birlikte içeride çekme gerilmeleri oluşmaya başlamıştır. %2'lik ezme oranında ise durumun tekrar tersine döndüğü; çekme gerilmeleri yüzeyde yeniden oluşmaya başladığı ve bu durumun %10 ezme oranına kadar daha belirgin hale geldiği gözlenmiştir.

Determining the optimal reduction ratio in temper rolling in terms of residual stress distribution across thickness

Materials with compressive stresses on the surface withstand fatigue failures, cracking, galling, and corrosion. This compressive stress at the surface can be created by temper rolling. The rolling process must be conducted with an appropriate reduction to obtain the desired benefit from temper rolling. A 1% thickness reduction is usually applied to endow flatness and surface texture to the strip, and this reduction is sufficient to eliminate the discontinuous yielding phenomenon. In this study, 2.5-mm-thick low-carbon steel sheet (DC01 grade) samples were annealed at approximately 600°C for 5 minutes, temper-rolled at room temperature at various reduction ratios subsequently, and the residual stresses formed along the thickness by rolling were investigated. This study has revealed that a 1% reduction ratio is insufficient for developing compressive stresses on the surface, but this can only be achieved with a 1.5% reduction ratio. When the reduction ratio was increased to 1.8%, tensile stresses began to occur inside, along with compressive stresses on the surface. It was observed that at a reduction ratio of 2%, the situation was reversed again; tensile stresses began to regenerate at the surface, and this became more pronounced up to a 10% reduction ratio.

___

  • Ali, M. Y., & Pan, J. (2012). Effect of a deformable roller on residual stress distribution for elastic-plastic flat plate rolling under plane strain conditions. SAE International Journal of Materials and Manufacturing, 5(1), 129–142. https://doi.org/10.4271/2012-01-0190
  • Azarhoushang, B., & Kadivar, M. (2021). Thermal aspects of abrasive machining processes. Tribology and Fundamentals of Abrasive Machining Processes: Third Edition. Elsevier Inc. https://doi.org/10.1016/B978-0-12-823777-9.00008-2
  • Çolak, B. (2021). How the skin-pass rolling reduction ratio affects the strain aging behaviour of low-carbon steel sheets. Ironmaking and Steelmaking, 48(10), 1254–1260. https://doi.org/10.1080/03019233.2021.1936877
  • Çolak, B., & Kurgan, N. (2018). An experimental investigation into roughness transfer in skin-pass rolling of steel strips. International Journal of Advanced Manufacturing Technology, 96(9–12), 3321–3330. https://doi.org/10.1007/s00170-018-1691-9
  • Çolak, B., & Kurgan, N. (2019). Skin-pass rolling of sheet steel. The International Conference on Material Science and Technology (IMSTEC) (K. Bülent (ed.); pp. 207–212).
  • Fang, X., Fan, Z., Ralph, B., Evans, P., & Underhill, R. (2002). Effect of temper rolling on tensile properties of C-Mn steels. Materials Science and Technology, 18(3), 285–288. https://doi.org/10.1179/026708301225000734
  • Grassino, J., Vedani, M., Vimercati, G., & Zanella, G. (2012). Effects of skin pass rolling parameters on mechanical properties of steels. International Journal of Precision Engineering and Manufacturing, 13(11), 2017–2026. https://doi.org/10.1007/s12541-012-0266-1
  • Jafarlou, D., Hassan, M., Mardi, N. A., & Zalnezhad, E. (2014). Influence of temper rolling on tensile property of low carbon steel sheets by application of Hill 48 anisotropic yield criterion. Procedia Engineering, 81(October), 1222–1227. https://doi.org/10.1016/j.proeng.2014.10.101
  • Kalpakjian, S., & Schmid, S. (2007). Manufacturing processes for engineering materials (5th Edition). Pearson
  • Kanchidurai, S., Krishanan, P. A., Baskar, K., & Saravana Raja Mohan, K. (2017). A review of inducing compressive residual stress - Shot peening; On structural metal and welded connection. IOP Conference Series: Earth and Environmental Science, 80(1), 0–11. https://doi.org/10.1088/1755-1315/80/1/012033
  • Koohbor, B., & Serajzadeh, S. (2011). Kinetics of static strain aging after temper rolling of low carbon steel. Ironmaking and Steelmaking, 38(4), 314–320. https://doi.org/10.1179/1743281210Y.0000000009
  • Kurgan, N., & Özakın, B. (2020). Temper haddelemede pürüzlülük transferini etkileyen parametrelerin incelenmesine yönelik bir derleme çalışması. Marmara University, 1(2), 23–34. https://doi.org/10.35333/porta.2019.99
  • Lake, J. S. H. (1985). Control of discontinuous yielding by temper rolling. Journal of Mechanical Working Technology, 12(1), 35–66. https://doi.org/10.1016/0378-3804(85)90041-5
  • Luis, C., Gaspérini, M., Bouvier, S., & Li, J. J. (2009). Effect of temper rolling on the mechanical behaviour of thin steel sheets under monotonous and reverse simple shear tests. International Journal of Material Forming, 2(SUPPL. 1), 471–474. https://doi.org/10.1007/s12289-009-0582-x
  • Ma, Q. Long, Wang, D. Cheng, Liu, H. Min, & Lu, H. Ming. (2009). Effect of temper rolling on tensile properties of low-Si Al-killed sheet steel. Journal of Iron and Steel Research International, 16(3), 64–67. https://doi.org/10.1016/S1006-706X(09)60045-5
  • Mahdavi, H., Poulios, K., & Niordson, C. F. (2019). Determination of optimal residual stress profiles for improved rolling contact fatigue resistance. MATEC Web of Conferences, 300, 06002. https://doi.org/10.1051/matecconf/201930006002
  • Mazur, V. L. (2012). Temper rolling of sheet steel. Steel in Translation, 42(4), 348–352. https://doi.org/10.3103/S0967091212040109
  • Mazur, V. L. (2015). Production of rolled steel with specified surface roughness. Steel in Translation, 45(5), 371–377. https://doi.org/10.3103/S0967091215050083
  • Morikage, Y., Igi, S., Oi, K., Jo, Y., Murakami, K., & Gotoh, K. (2015). Effect of compressive residual stress on fatigue crack propagation. Procedia Engineering, 130, 1057–1065. https://doi.org/10.1016/j.proeng.2015.12.263
  • Özakin, B. (2023). Experimental investigation of the effect of skin-pass rolling reduction ratio on corrosion behaviors of AISI 304 stainless steel sheet materials. Surface Topography: Metrology and Properties, 11(2). https://doi.org/10.1088/2051-672X/accd07
  • Özakın, B., Çolak, B., & Kurgan, N. (2021). Effect of material thickness and reduction ratio on roughness transfer in skin-pass rolling to DC04 grade sheet materials. Industrial Lubrication and Tribology, 73(4), 676–682. https://doi.org/10.1108/ILT-10-2020-0377
  • Özakın, B., & Kurgan, N. (2022). Effect of temper rolling reduction ratio on microhardness and microstructure of DC04 grade sheet material. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 11(2), 393–399. https://doi.org/10.17798/bitlisfen.956944
  • Ren, Z., Li, B., & Zhou, Q. (2022). Subsurface residual stress and damaged layer in high-speed grinding considering thermo-mechanical coupling influence. International Journal of Advanced Manufacturing Technology, 122(2), 835–847. https://doi.org/10.1007/s00170-022-09965-9
  • Yu, H., Lu, C., Tieu, K., Li, H., Godbole, A., & Liu, X. (2019). Microstructure and mechanical properties of large-volume gradient-structure aluminium sheets fabricated by cyclic skin-pass rolling. Philosophical Magazine, 99(18), 1–20. https://doi.org/10.1080/14786435.2019.1619948