Farklı malzeme özelliklerine sahip gömülü nesnelerin yer radarı (GPR) yöntemiyle tespit edilmesi

Yüksek çözünürlüklü yeraltı verisi alınmasına olanak sağlayan GPR, gömülü sığ nesnelerin derinlik, geometri, sınır ve hacimlerinin hesaplanmasında önemli bir jeofizik yöntem haline gelmiştir. Bu çalışmada, yer radarı yöntemi ile gömülü nesnelerin konum, büyüklük ve fiziksel özellik parametrelerinin tespit edilebilirliği, gerçek arazi şartlarında laboratuvar ortamı oluşturularak ortaya konulmuştur. Bu amaçla, test sahasında dolgu toprak malzeme üzerinde derinlik ve uzunluğu 5 m olacak şekilde gerçeğe yakın bir laboratuvar ortamı oluşturululmuş ve farklı malzeme özelliklerinde gömülü nesneler yerleştirilmiştir. Ayrıca, test sahasındaki toprak dolgu malzemenin orta kısmına kum malzeme eklenerek farklı tabakalardaki durumu da irdelenmeye çalışılmıştır. GPR verileri, modeller üzerinde RAMAC CU II sistem ve 500 MHz merkez frekanslı kapalı anten kullanılarak toplanmıştır. Veriler işlendikten sonra gömülü nesnelere dik bir profile ait radargram üzerinde yansımış/ saçılmış elektromanyetik (EM) dalga alanları irdelenmiştir. Böylece gömülü nesnelerin derinlikleri ile birlikte konumları, büyüklükleri, fiziksel özellikleri (cinsleri) ve farklı tabaka ortamlarındaki durumları ortaya konulmuştur. Sonuçlara göre, işlenmiş radargramlar üzerinde hiperbollerin tepe genişliği gömülü nesnelerin büyüklükleri belirlenmiştir. Gömülü nesnelerin cinsleri ve farklı tabaka ortamlarındaki durumları net bir şekilde ortaya koyulmuştur. Plastik borunun yansıma katsayılarından saçılan dalga alanı genlikleri (A ve C bölgeleri), gömülü nesnelerden demir borudan saçılan dalga alanı genliklerinden (B bölgesi) önemli ölçüde düşüktür. Radargam üzerinde C bölgesinden derine doğru uzanan kuvvetli yansımaların sebebinin plastik boru içerisindeki kurşun bloklardan kaynaklandığı düşünülmektedir.

Detection of buried objects with different material properties by ground penetrating radar (GPR) method

GPR, which permits the capture of high-resolution subterranean data, has developed into a key geophysical technique for determining the depth, geometry, boundaries, and volumes of buried shallow objects. In this study, the detectability of the location, size, and physical property parameters of buried objects with the ground radar method was revealed by creating a laboratory environment in real field conditions. For this purpose, a realistic laboratory environment with a depth and length of 5 m was created on the filled soil material at the test site, and buried objects with different material properties were placed. In addition, by adding sand material to the middle part of the soil fill material in the test area, its situation in different layers was tried to be examined. GPR data were collected on the models using the RAMAC CU II system and a 500 MHz center frequency shield antenna. After processing the data, reflected/scattered electromagnetic (EM) wave fields on the radargram of a profile perpendicular to the buried objects were examined. In this way, the positions, sizes, physical properties (types) of buried objects along with their depths and their situations in different layer environments have been revealed. According to the results, the peak width of hyperbolas and the sizes of buried objects were determined on the processed radargrams. The types of buried objects and their situations in different layer environments are clearly revealed. The scattered wave field amplitudes of the plastic pipe (A and C regions) from the reflection coefficients are substantially lower than the scattered wave field amplitudes of the iron pipe (B region) from the buried objects. It is thought that the strong reflections extending from the C region to the deep on the radar are caused by the lead blocks in the plastic pipe.

___

  • Annan, A. (2005). Ground-penetrating radar. In Near-surface geophysics (pp. 357-438). Society of Exploration Geophysicists.
  • Annan, A., & Davis, J. (1977). Impulse radar applied to ice thickness measurements and freshwater bathymetry. Geological Survey of Canada, Report of Activities Paper, 77, 117-124.
  • Aydın, Z. O., Babacan, A. E., Seren, A., & Gelisli, K. (2022). New historical findings discovery at inner areas of Akçakale Castle (Trabzon, Turkey) with GPR Method. Sigma Journal of Engineering and Natural Sciences, 40(2), 344-355.
  • Carcione, J. M., Seriani, G., & Gei, D. (2003). Acoustic and electromagnetic properties of soils saturated with salt water and NAPL. Journal of Applied Geophysics, 52(4), 177-191. https://doi.org/10.1016/S0926-9851(03)00012-0.
  • Daniels, D. J. (2004). Ground penetrating radar (Vol. 2nd edition). The Institution of Electrical Engineers.
  • Davis, J., & Annan, A. (1986). Machinations: high-resolution sounding using ground-probing radar. Geoscience Canada.
  • Davis, J. L., & Annan, A. P. (1989). Ground‐penetrating radar for high‐resolution mapping of soil and rock stratigraphy 1. Geophysical prospecting, 37(5), 531-551.
  • Hammon III, W. S., McMechan, G. A., & Zeng, X. (2000). Forensic GPR: finite-difference simulations of responses from buried human remains. Journal of Applied Geophysics, 45(3), 171-186. https://doi.org/10.1016/S0926-9851(00)00027-6.
  • Hugenschmidt, J. (2002). Concrete bridge inspection with a mobile GPR system. Construction and building materials, 16(3), 147-154.
  • Kurt, B., Kadıoğlu, S., & Ekincioǧlu, E. (2009). Determination of the location, size and physical characteristics of buried pipes by ground penetrating radar method Yer radarı yöntemi ile gömülü boruların konum, büyüklük ve fiziksel özellikleri ile belirlenmesi. Yerbilimleri/Earth Sciences, 30(1).
  • Kurtulmuş, T. Ö., & Drahor, M. G. (2008). Yer radarı modellemesinde fiziksel ve geometrik parametre etkilerinin araştırılması. Yerbilimleri, 29(2), 37-52.
  • Leckebusch, J. (2003). Ground‐penetrating radar: a modern three‐dimensional prospection method. Archaeological prospection, 10(4), 213-240.
  • Lopera, O., Milisavljević, N., & Lambot, S. (2007). Clutter reduction in GPR measurements for detecting shallow buried landmines: a Colombian case study. Near Surface Geophysics, 5(1), 57-64. https://doi.org/10.3997/1873-0604.2006018.
  • Neubauer, W., Eder‐Hinterleitner, A., Seren, S., & Melichar, P. (2002). Georadar in the Roman civil town Carnuntum, Austria: an approach for archaeological interpretation of GPR data. Archaeological prospection, 9(3), 135-156. https://doi.org/10.1002/arp.183.
  • Ramac/GPR. (n.d). Operating manual version 1. https://fcc.report/FCC-ID/QLASH1GHZ/375215.pdf
  • Sari, M., & Ozturk, S. (2018). Detection of the complex ground problems by ground penetrating radar: Examples from Gümüşhane University. Sigma Journal of Engineering and Natural Sciences, 36(4), 1297-1310.
  • Sarıçiçek, I., & Şeren, A. (2020). In-Sıtu Wall Concrete Qualıty Usıng Velocıty Fıeld-Dependent Mıgratıon In Zıgana And Torul Tunnels. Sigma Journal of Engineering and Natural Sciences, 38(2), 979-993.
  • Streich, R., Van der Kruk, J., & Green, A. G. (2006). Three‐dimensional multicomponent georadar imaging of sedimentary structures. Near Surface Geophysics, 4(1), 39-48. https://doi.org/10.3997/1873-0604.2005030.
  • ULiege & BGS. (n.d). Introduction to Ground Penetrating Radar. https://vb.nweurope.eu/media/12924/5-rawfill-training-days_geophysics_gpr.pdf
  • Uyar, Ş. (2017). Investigation of problems in clean and waste water infrastructure systems with georadar method. KTU Institute of Science.
  • Zeng, X., & McMechan, G. A. (1997). GPR characterization of buried tanks and pipes. Geophysics, 62(3), 797-806. https://doi.org/10.1190/1.1444189.
Gümüşhane Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2011
  • Yayıncı: GÜMÜŞHANE ÜNİVERSİTESİ