??(????) nin normalliyeninin alt yörüngesel graflarındaki dörtgenler

Bu çalışmada, Γ0(?) nin ???(2, ℝ) deki normalliyeni ???(?) nin alt yörüngesel grafları araştırılmıştır. Burada ? pozitiftam sayısı, 25?2şeklindeki doğal sayıları ve ? sayısı da ? > 3 şartını sağlayan bir asal sayıyı ifade etmektedir. ???(?)nin genişletilmiş rasyonel sayılar kümesi ℚ̂ üzerindeki hareketinin transitif olmadığı bilinmektedir. Bu transitif olmayanhareketten doğan grafların kenar şartları ve kenar şartları aracılığı ile de alt yörüngesel graflarda ne tür devreler olduğuaraştırılmıştır. Yapılan çalışmanın sonucunda bu devrelerin yalnızca dörtgen devreler olacağı elde edilmiştir.

Quadrilaterals in the suborbital graphs of the normalizer of Γ0(2 5? 2 )

In this paper, we investigate the suborbital graphs for the normalizer of ?0(?) in ???(2, ℝ), where N will be of the form25?2 , p is a prime and p > 3. It is known that the action of the normalizer ???(?) on the extended rational numbers ℚ̂ is non transitive. The edge conditions of the graphs arising from this non transitive action and then using these edge conditions, which kind of circuits the suborbital graphs have are investigated. Finally, we show that these circuits are only quadrilaterals.

___

  • Akbaş, M. and Singerman, D. (1992). The signature of the normalizer of Γ0(?), London Mathematical Society Lecture Note Series, 165, 77–86.
  • Beşenk, M., Güler, B. Ö. and Büyükkaya, A. (2019). Suborbital graphs for a non-transitive action of the normalizer, Filomat, 33 (2), 385–392, https://doi.org/10.2298/FIL1902385B
  • Biggs, N. L. and White, A. T. (1979). Permutation Groups and Combinatorial Structures, Cambridge University Press, Cambridge.
  • Conway, J. H. and Norton, S. P. (1977). Monstrous moonshine, London Mathematical Society Lecture Note Series, 11, 308–339.
  • Güler, B. Ö., Beşenk, M., Değer, A.H. and Kader, S. (2011). Elliptic elements and circuits in suborbital graphs, Hacettepe Journal of Mathematics and Statistics, 40(2), 203-210.
  • Güler, B. Ö., Beşenk, M. and Kader, S. (2019). On congruence equations arising from suborbital graphs, Turkish Journal of Mathematics, 43(5), 2396–2404. https://doi.org/10.3906/mat-1905- 93.
  • Güler, B. Ö., Kör, T. and Şanlı, Z. (2016). Solution to some congruence equations via suborbital graphs, Springerplus, 2016(5), https://doi.org/10.1186/s40064-016-3016-5.
  • Güler, B. Ö. and Kader, S. (2010). Self-paired edges for the normalizer, Algebras Groups and Geometries, 27(3), 369–376.
  • Jones, G. A., Singerman, D. and Wicks, K. (1991). The modular group and generalized Farey graphs, London Mathematical Society Lecture Note Series, 160, 316–338. https://doi.org/10.1017/CBO9780511661846.00 6
  • Kader, S., Güler, B. Ö. and Akşit, E. (2020). On quadrilaterals in the suborbital graphs of the normalizer, Transactions on Combinatorics, 9(3), 147–159, https://doi.org/10.22108/TOC.2020.120019.168 5
  • Kader, S., Güler, B. Ö. and Deger, A. H. (2010). Suborbital graphs for a special subgroup of the normalizer of Γ0(?), Iran. Journal of Science and Technology Transactions A: Science, 34 (4), 305–312.
  • Keskin, R. (2006). Suborbital graphs for the normalizer of Γ0(?), European Journal of Combinatorics, 27, 193-206, https://doi.org/10.1016/j.ejc.2004.09.004.
  • Keskin, R. and Demirtürk, B. (2009). On suborbital graphs for the normalizer Γ0(?), The Electronic Journal of Combinatorics, 16, 1-18.
  • Sims, C. C. (1967). Graphs and finite permutation groups, Mathematische Zeitschrift, 95, 76–86, https://doi.org/10.37236/205.
  • Yazıcı Gözütok, N. and Güler, B. Ö. (2019). Elliptic elements of a subgroup of the normalizer and circuits in orbital graphs, Applications and Applied Mathematics: An International Journal, Special issue 3, 11–21.