Nikotinamid İçeren Çinko (II) Kompleksinin Moleküler Özellikleri ve Titreşim Spektrumu

Bu çalışmada, (C6H11N2)[ZnBr3(C6H6N2O)] (1a) molekülü Chunyan Li ve arkadaşları tarafından sentezlendi Chunyan (2015). Sentezlenen molekül 1a nın geometrik parametreleri, kırmızı-altı (IR) ve Raman titreşim işaretlemeleri ve spektrumları Chunyan Li ve arkadaşları tarafından deneysel olarak çalışıldı Chunyan (2015) fakat teorik olarak çalışılmadı. Bu nedenle molekül 1a nın moleküler geometrik yapısı, harmonik titreşim dalgasayıları, moleküler sınır orbital (HOMO-LUMO) enerjileri, mulliken, APT ve NBO atom yükleri ve moleküler elektrostatik potansiyel (MEP) yüzeyleri Gaussian programı kullanılarak hesaplandı. Gaussian programında hesaplanan teorik hesaplamaların tümü DFT/B3LYP ve DFT/HSEH1PBE metotları ile 6-311++G(d,p) seti ile hesaplandı.  

Molecular properties and vibrational spectra of zinc (II) complex with nicotinamide

In this study, (C6H11N2)[ZnBr3(C6H6N2O)] (1a) molecule was synthesized by Chunyan Li and et al. Chunyan (2015). Geometrical parameters of synthesized molecule 1a, IR and Raman vibration marking and spectra were studied experimentally by Chunyan Li and et al.  Chunyan (2015) but it were not studied theoretically. For this reason, molecular geometry, harmonic vibration waves, molecular frontier orbital (HOMO-LUMO) energies, mulliken, APT and NBO atomic charges and molecular electrostatic potential (MEP) surfaces were calculated for molecule 1a by using the Gaussian program. All of the theoretical calculations calculated in the Gaussian program were calculated using B3LYP and HSEH1PBE methods at 6-311 ++ G (d,p) set.

___

  • Akalin E. ve Akyuz S., 2006. Vibrational analysis of free and hydrogen bonded complexes of nicotinamide and picolinamide Vib. Spectrosc., 42, 333-340.
  • Bakiler, M., Bolukbasi, O., ve Yilmaz, A., 2007. An experimental and theoretical study of vibrational spectra of picolinamide, nicotinamide, and isonicotinamide, Journal of Molecular Structure, 826, 1, 6-16.
  • Becke, A. D., 1993. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 98, 5648.
  • Bolukbasi, O., ve Akyuz, S., 2005. Computational vibrational study on coordinated nicotinamide, Journal of Molecular Structure, 744, 961-971.
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T.,. Montgomery, J.A, Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J.E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J. B., Ortiz, J.V., Cioslowski, J. ve Fox D.J., 2009. Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT.
  • Frisch M. J., Pople J.A., Binkley J.S. 1984. Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J. Chem. Phys.. 80, 3265.
  • Heyd, J. ve Scuseria G., 2004. Efficient hybrid density functional calculations in solids: Assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional. J. Chem. Phys., 121, 1187.
  • Heyd J. and Scuseria G.E. 2004. Assessment and validation of a screened Coulomb hybrid density functional. J. Chem. Phys., 120, 7274.
  • Heyd J., Peralta J. E., Scuseria G. E., and Martin R. L. 2005. Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. J. Chem. Phys., 123, 174101.
  • Heyd J., Scuseria G. E., and Ernzerhof M. 2006. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys., 124, 219906.
  • Ide, S., Ataç, A. ve Yurdakul, Ş., 2002. Spectroscopic and structural studies on dichlorobis (nicotinamide) zinc (II). J. Mol. Struct., 605, 103-107.
  • Lee, C., Yang, W. ve Parr R.G., 1988. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 37, 785.
  • Li, C., Cui, F., Zhang, H. ve Xuan, X., 2015. Ionothermal synthesis, properties and vibrational spectra of zinc (II) complex with nicotinamide. Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy, 134, 367-371.
  • Magel, E., Hillinger, A.C., Wagner, T. ve Holl, W., 2001. Oxidative pentose phosphate pathway and pyridine nucleotides in relation to heartwood formation in Robinia pseudoacacia L. Phytochemistry 57, 1061-1068.
  • Pasaoglu, H., Güven, S., Heren, Z. ve Büyükgüngör, O., 2006. Synthesis, spectroscopic and structural investigation of ZnI 2 (nicotinamide) 2, ZnI 2 (isonicotinamide) 2 and [Zn (H 2 O) 2 (picolinamide) 2] I 2. J. Mol. Struct., 794, 270-276.
  • Pir Gümüş, H., Atalay, Y., 2017. 3-hidroksi-4-hidroksimiinometil-5-hidroksimetil-1,2-dimetilpiridinyum iyodid molekülünün geometrik yapısının incelenmesi, sakarya university journal of science, vol. 21, no. 3: pp. 564-571.
  • Raj, S.S., Fun, H.K., Zhao, P.S.,Jian, F.F., Lu, L.D., Yang, X.J. ve Wang, X., 2000. Bis (2-aminopyridine-N) bis (benzoato-O) zinc. Acta Cryst., C 56, 742-743.
  • Shibata, K., 1994. Reparative Effect of Nicotinamide and Nicotinic Acid on the Aggravation of Tryptophan-nicotinamide Metabolism Caused by 6-Aminonicotinamide. Biosci. Biotechnol. Biochem., 58, 1729-1730.
  • Sismanoglu, T., 2003. Thermodynamics of stability constant of binary complex of nicotinamide with Mn. Chin. Chem. Lett., 14, 1207-1210.