Jeomorfik indislerle Varto Havzası’nı (Muş) denetleyen fayların göreceli tektonik aktivitesinin belirlenmesi

Bu çalışmada Varto Havzası’nı denetleyen fayların göreceli tektonik aktivitesinin jeomorfik indislerle belirlenmesi amaçlanmıştır. Varto Havzası, Karlıova’nın güneydoğusunda Bingöl Dağı ile Şerafettin Dağı arasında yer almaktadır. Havzanın oluşumunda, Karlıova’da, Doğu Anadolu Fayı ile kesişen, Kuzey Anadolu Fayı’nın güneydoğuya doğru devamı niteliğinde olan Varto Fayı etkili olmuştur. Bu konumu nedeniyle havza ve çevresinde tektonik hareketlilik çok yüksektir. Havzanın genç tektonik hareketi jeomorfik indis analizleri yöntemiyle ortaya konulmuştur. Bu analizlerde sayısal yükselti modeli (sym), akarsu, fay ve jeoloji verileri temel veri seti olarak kullanılmıştır. Havza çevresi ve Varto Fay Zonu (VFZ) üzerinde tektonik aktiviteyi yansıtan toplam 43 alt havza belirlenmiştir. Bu amaçla hipsometrik integral (Hi), hipsometrik eğri (He), havza asimetri faktörü (AF), drenaj havzası şekli (Bs), akarsu uzunluk-gradyan indeksi (SL), yatak kıvrımlılığı (S) ve uzama oranı (Re) analizleri yapılmıştır. Havza analizleri ile birlikte aktif tektoniğin belirlenmesinde sık kullanılan dağ önü sinüslülük oranı (Smf) ve vadi tabanı genişliği-vadi yüksekliği oranı (Vf) ölçümleri ile havzadaki akarsuların boyuna profil analizleri yapılmıştır. Analiz sonuçlarına göre havzaların tektonik aktivite sınıfları belirlenerek dağılışları gösterilmiştir. Bu sonuçlara göre havza güneyindeki iki küçük havza ile VFZ’deki bir havza dışındaki diğer havzaların tamamı çok yüksek ve yüksek tektonik aktivite sınıfında yer almaktadır. İndis sonuçları, yaşanan depremler, fay zonu boyunca çıkan sıcak ve soğuk kaynakları, jeomorfolojik şekiller Varto Havzası ve çevresinde aktif tektoniğin güçlü olduğunu kanıtlamaktadır.

Determination of relative tectonic activity of faults controlling Varto Basin (Muş) by geomorphic indices

In this study, it is aimed to determine the relative tectonic activity of faults controlling Varto Basin with geomorphic indices. Varto Basin is located in the southeast of Karlıova, between Bingöl and Serafettin Mounts. Varto Fault, which intersects with the East Anatolian Fault in Karlıova and the continuation the North Anatolian Fault towards southeast, has been effective in the formation of the basin. Being right lateral strike slip, Varto Fault starts in the east of Karlıova Triple Junction and continues towards southeast in the form of a zone. Due to this location, tectonic activity in and around the basin is very high. The young tectonic movement of the basin has been revealed by geomorphic index analysis method. In these analyses, digital elevation model (DEM), stream, fault and geology data were used as the basic data set. A total of 43 sub-basins reflecting tectonic activity have been identified around the basin periphery and on Varto Fault zone (VFZ). For this purpose, hypsometric integral (Hi), hypsometric curve (Hc), basin asymmetry factor (AF), drainage basin shape (Bs), stream length-gradient index (SL), channel sinuosity (S) and elongation ratio (Re) analyses were performed. Along with the basin analyses, the measurements of mountain front sinuosity ratio (Smf) and valley floor width-to-valley height ratio (Vf), which are frequently used in the determination of active tectonics, and streams longitudinal profile analyses were done in the basin. According to the results of the analyses, tectonic activity classes of the basins were determined and their distributions were shown. According to these results, except for the two basins in the south of the Varto basin and one located in the VFZ, all others fall into very high and high tectonic activity classes. Index results, earthquakes, hot and cold sources along the fault zone and geomorphological figures prove that active tectonics are intense in and around Varto Basin.

___

  • Acharjee., S., Sarma. J. N., & Mili, N. (2013). Morphotectonic analysis of Disai River Basin Jorhat, Assam (India) using Remote Sensing and GIS approach. Asian Journal of Spatial Science, 1, 53–66.
  • AFAD- Afet ve Acil Durum Yönetimi Başkanlığı. (2022, 29 Kasım). https://deprem.afad.gov.tr/
  • Akyüz, H. S., Sançar, T., & Zabcı. C. (2010). Karlıova üçlü eklemi civarında Göynük fayı (Bingöl) ve Varto fayının (Muş) morfotektoniği, fay geometrisi ve kayma hızı (No. 109Y160). Türkiye Bilimsel ve Teknolojik Araştırma Kurumu. https://search.trdizin.gov.tr/tr/yayin/detay/610486/
  • Ambraseys, N. N., & Zátopek, A. (1968). The Varto Üstükran (Anatolia) earthquake of 19 August 1966 summary of a field report. Bulletin of the Seismological Society of America, 58(1), 47–102. https://doi.org/10.1785/BSSA0580010047
  • Arıkan, M., Erkal, T., & Ertek T. A. (2023). Kuzey Anadolu Fay Zonu ve güneyindeki Kızılırmak Havzası’nın (Çorum) relief morfometrisi. Eastern Geographical Review, 28 (49), 8-27. https://doi.org/10.5152/EGJ.2023.220405
  • Avci, V., & Sunkar, M. (2017). Jeomorfik indislerle Varto Havzası'nda (Muş) tektonik aktivitenin belirlenmesi. Türk Coğrafya Kurumu 75. Yıl Kongresi, 730-742. Ankara.
  • Azor, A., Keller, E. A., & Yeats, R. S. (2002). Geomorphic indicators of active fold growth: South Mountain–Oak Ridge anticline. Ventura Basin, Southern California. Geological Society of America Bulletin, 114 (6), 745–753.
  • Balkaya, M., Özden, S., & Akyüz, H. S. (2021). Morphometric and morphotectonic characteristics of Sürgü and Çardak Faults (East Anatolian Fault Zone). Journal of Advanced Research in Natural and Applied Sciences, 7(3), 375–392. https://doi.org/10.28979/jarnas.939075
  • Bull, W. B. (1977). Tectonic geomorphology of the Mojave desert: US geological survey contract report 14-08-001-G-394. Office of Earthquakes. Volcanoes. and Engineering. Menlo Park. California. 188p.
  • Bull, W. B. (1978). Geomorphic tectonic activity classes of the south front of the San Gabriel Mountains. California. Geosciences Department. University of Arizona.
  • Bull, W. B. (2008). Tectonic geomorphology of mountains: A new approach to paleoseismology. John Wiley & Sons.
  • Bull, W. B. (2011). Tectonically active landscapes. John Wiley & Sons.
  • Bull, W. B., & McFadden, L. D. (1977). Tectonic geomorphology north and south of the Garlock fault. California. In D. O. Doehring (ed.), Geomorphology in Arid Regions. Proceedings of the Eight Annual Geomorphology Symposium. Binghamton, NY: State University of New York at Binghamton, 115-138
  • B.Ü.-KRDAE Bölgesel Deprem-Tsunami İzleme ve Değerlendirme Merkezi. (2022a, 12 Ocak). http://www.koeri.boun.edu.tr/sismo/2/deprem-bilgileri/tarihsel-depremler
  • B.Ü.-KRDAE Bölgesel Deprem-Tsunami İzleme ve Değerlendirme Merkezi. (2022b, 15 Kasım). http://www.koeri.boun.edu.tr/sismo/zeqdb/
  • Cannon, P. J. (1976). Generation of explicit parameters for a quantitative geomorphic study of the mill creek drainage basin. Oklahoma Geology Notes, 36, 3–16.
  • Chen, Y.-C., Sung, Q., & Cheng, K.-Y. (2003). Along-strike variations of morphotectonic features in the Western Foothills of Taiwan: Tectonic implications based on stream-gradient and hypsometric analysis. Geomorphology, 56(1–2), 109–137. https://doi.org/10.1016/S0169-555X(03)00059-X
  • Cheng, K.-Y., Hung, J.-H., Chang, H.-C., Tsai, H., & Sung, Q.-C. (2012). Scale independence of basin hypsometry and steady state topography. Geomorphology, 171-172, 1–11. https://doi.org/10.1016/j.geomorph.2012.04.022
  • Coşkuner, B., Eren, Y., Demircioğlu, R., & Aksoy, R. (2019). Fethiye Burdur Fay Zonu’nun kuzeydoğu kesiminin (Burdur-Güneybatı Anadolu) göreceli tektonik aktivitesinin jeomorfik indislerle incelenmesi. Türkiye Jeoloji Bülteni, 62(3), 221–246. https://doi.org/10.25288/tjb.546135
  • Cox, R. T. (1994). Analysis of drainage-basin symmetry as a rapid technique to identify areas of possible Quaternary tilt-block tectonics: An example from the Mississippi Embayment. Geological Society of America Bulletin, 106(5), 571–581.
  • Cuong, N. Q., & Zuchiewicz, W. A. (2001). Morphotectonic properties of the Lo river fault near Tam Dao in North Vietnam. Natural Hazards and Earth System Sciences, 1, 15–22. 10.5194/nhess-1-15-2001
  • Davis, W. M. (1899). The geographical cycle. The Geographical Journal, 14(5). 481–504.
  • Dehbozorgi, M., Pourkermani, M., Arian, M., Matkan, A. A., Motamedi, H., & Hosseiniasl, A. (2010). Quantitative analysis of relative tectonic activity in the Sarvestan area, central Zagros, Iran. Geomorphology, 121(3–4). 329–341. https://doi.org/10.1016/j.geomorph.2010.05.002
  • Duman, T. Y., Olgun, Ş., Çan, T., Nefeslioğlu, H. A., Hamzaçebi, S., Elmacı, H., Durmaz, S., & Çörekçioğlu, Ş. (2009). Türkiye heyelan envanteri haritası 1/500.000 ölçekli Erzurum paftası. Maden Tetkik ve Arama Genel Müdürlüğü.
  • El Hamdouni, R., Irigaray, C., Fernández, T., Chacón, J., & Keller. E. A. (2008). Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain). Geomorphology, 96(1–2). 150–173. https://doi.org/10.1016/j.geomorph.2007.08.004
  • Emre, Ö., Duman, T. Y., Olgun, Ş., Özalp, S., & Elmacı. H. (2012). 1/250000 ölçekli Türkiye diri fay haritaları Erzurum (NJ 37-4) paftası. Seri No:48. Maden Tetkik ve Arama Genel Müdürlüğü.
  • Emre, Ö., Duman, T.Y., Özalp, S., Elmacı, H., Olgun, Ş., & Şaroğlu. F. (2013). Açıklamalı Türkiye diri fay haritası. ölçek 1:1.250.000. Maden Tetkik ve Arama Genel Müdürlüğü. Özel Yayın Serisi-30. Ankara-Türkiye. ISBN: 978-605-5310-56-1 Figueiredo, P. M., Rockwell, T. K., Cabral, J., & Lira. C. P. (2019). Morphotectonics in a low tectonic rate area: Analysis of the southern Portuguese Atlantic coastal region. Geomorphology, 326, 132–151. https://doi.org/10.1016/j.geomorph.2018.02.019
  • Giaconia, F., Booth-Rea, G., Martínez-Martínez, J. M., Azañón, J. M., & Pérez-Peña. J. V. (2012). Geomorphic analysis of the Sierra Cabrera. an active pop-up in the constrictional domain of conjugate strike-slip faults: The Palomares and Polopos fault zones (eastern Betics. SE Spain). Tectonophysics, 580, 27–42. https://doi.org/10.1016/j.tecto.2012.08.028
  • Gürboğa, Ş. (2015). Source Fault of 19 August 1966 Varto earthquake and its’ mechanism: New field data, Eastern Turkey. Journal of Asian Earth Sciences, 111, 792-803. https://doi.org/10.1016/j.jseaes.2015.07.015
  • Hack, J. T. (1973). Stream-profile analysis and stream-gradient index. Journal of Research of the Us Geological Survey, 1(4). 421–429.
  • Hare, P. W., & Gardner. T. W. (1985). Geomorphic indicators of vertical neotectonism along converging plate margins. Nicoya Peninsula. Costa Rica. In: M. Morisawa & J.T. Hack (Eds.), Tectonic Geomorphology.: Proceedings of the 15 Annual Binghamton Geomorphology Symposium September 1984. Boston: Allen & Unwin, 75-104.
  • Harkins, N.W., Anastasio, D. J., & Pazzaglia, F. J. (2005). Tectonic geomorphology of the Red Rock Fault, insights into segmentation and landscape evolution of a developing range front normal fault. Journal of Structural Geology, 27(11), 1925-1939. https://doi.org/10.1016/j.jsg.2005.07.005
  • Herece, E. (2008). Doğu Anadolu Fayı atlası. Maden Tetkik ve Arama Genel Müdürlüğü. 359 sayfa.
  • Huang, X., & Niemann, J. D. (2006). An evaluation of the geomorphically effective event for fluvial processes over long periods. Journal of Geophysical Research: Earth Surface, 111(F3). https://doi.org/10.1029/2006JF000477
  • Keller, E. A., & Pinter, N. (2002). Active tectonics: earthquakes, uplift, and landscape. Prentice-Hall. Upper Saddle River.
  • Keller, E. A., & Rockwell. T. K. (1984). Tectonic geomorphology, Quaternary chronology, and paleoseismicity. In: Costa, J.E., Fleisher, P.J. (eds.), Developments and applications of geomorphology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69759-3_7
  • Luo, W. (2000). Quantifying groundwater-sapping landforms with a hypsometric technique. Journal of Geophysical Research: Planets, 105(E1). 1685–1694. https://doi.org/10.1029/1999JE001096
  • Mahmood, S. A., & Gloaguen, R. (2012). Appraisal of active tectonics in Hindu Kush: Insights from DEM derived geomorphic indices and drainage analysis. Geoscience Frontiers, 3(4), 407–428. https://doi.org/10.1016/j.gsf.2011.12.002
  • Merritts, D., & Vincent, K. R. (1989). Geomorphic response of coastal streams to low, intermediate, and high rates of uplift, Medocino triple junction region, northern California. Geological Society of America Bulletin, 101(11), 1373–1388. https://doi.org/10.1130/0016-7606(1989)101<1373:GROCST>2.3.CO;2
  • Miller, V. C. (1953). A quantitative geomorphic study of drainage basin characteristic in the Clinch Mountain Area. Virginia and Tennesse. Technical report, Columbıa Unıv. New York.
  • Mirze, S. H. (2013). Varto Havzası (Muş) ve çevresinin jeomorfolojisi. [Yüksek Lisans Tezi, Fırat Üniversitesi Sosyal Bilimler Enstitüsü].
  • Moglen, G. E., Eltahir, E. A. B., & Bras, R. L. (1998). On the sensitivity of drainage density to climate change. Water Resources Research, 34(4). 855–862. https://doi.org/10.1029/97WR02709
  • Mueller, J. E. (1968). An introduction to the hydraulic and topographic sinuosity indexes. Annals of the Association of American Geographers, 58(2). 371–385. https://doi.org/10.1111/j.1467-8306.1968.tb00650.x
  • Ntokos, D., Lykoudi, E., & Rondoyanni, T. (2016). Geomorphic analysis in areas of low-rate neotectonic deformation: South Epirus (Greece) as a case study. Geomorphology, 263, 156–169. https://doi.org/10.1016/j.geomorph.2016.04.005
  • Ntokos, D. (2018). Formulation of the conceptual model for the tectonic geomorphological evolution of an area: five main rivers of Greece as a case study. Catena, 167, 60-77. https://doi.org/10.1016/j.catena.2018.04.022
  • Ohmori, H. (1993). Changes in the hypsometric curve through mountain building resulting from concurrent tectonics and denudation. Geomorphology, 8(4), 263–277. https://doi.org/10.1016/0169-555X(93)90023-U
  • Ouchi, S. (1985). Response of alluvial rivers to slow active tectonic movement. Geological Society of America Bulletin, 96(4), 504–515. https://doi.org/10.1130/0016-7606(1985)96<504:ROARTS>2.0.CO;2
  • Pérez-Peña, J. V., Azañón, J. M., Booth-Rea, G., Azor, A., & Delgado, J. (2009a). Differentiating geology and tectonics using a spatial autocorrelation technique for the hypsometric integral. Journal of Geophysical Research: Earth Surface, 114(F2). https://doi.org/10.1029/2008JF001092
  • Pérez-Peña, J.V., Azañón, J. M., & Azor. A. (2009b). CalHypso: An ArcGIS extension to calculate hypsometric curves and their statistical moments. Applications to drainage basin analysis in SE Spain. Computers & Geosciences, 35(6), 1214–1223. https://doi.org/10.1016/j.cageo.2008.06.006
  • Pérez-Peña, J.V., Azor, A., Azañón, J. M., & Keller. E. A. (2010). Active tectonics in the Sierra Nevada (Betic Cordillera, SE Spain): insights from geomorphic indexes and drainage pattern analysis. Geomorphology, 119(1–2), 74–87. https://doi.org/10.1016/j.geomorph.2010.02.020
  • Piacentini, D., Troiani, F., Servizi, T., Nesci, O., & Veneri, F. (2020). SLIX: a gis toolbox to support along-stream knickzones detection through the computation and mapping of the stream length-gradient (SL) index. ISPRS International Journal of Geo-Information, 9(2), 69. https://doi.org/10.3390/ijgi9020069
  • Raj, R., Maurya, D. M., & Chamyal, L. S. (1999). Tectonic geomorphology of the Mahi river basin. Western India. Journal of Geological Society of India, 54(4), 387–398.
  • Ramírez-Herrera, M. T. (1998). Geomorphic assessment of active tectonics in the Acambay Graben, Mexican volcanic Belt. Earth Surface Processes and Landforms, 23(4), 317–332. https://doi.org/10.1002/(SICI)1096-9837(199804)23:4<317::AID-ESP845>3.0.CO;2-V
  • Rhea, S. (1993). Geomorphic observations of rivers in the Oregon Coast Range from a regional reconnaissance perspective. Geomorphology, 6 (2), 135-150. https://doi.org/10.1016/0169-555X(93)90043-2
  • Rockwell, T. K., Keller, E. A., & Johnson. D. L. (1985). Tectonic geomorphology of alluvial fans and mountain fronts near Ventura. California. Tectonic Geomorphology. Proceedings of the 15th Annual Geomorphology Symposium. Allen and Unwin Publishers. Boston. MA. 183–207.
  • Sağlam Selçuk, A., & Düzgün, M. (2017). Başkale Fay Zonu’nun tektonik jeomorfolojisi. Maden Tetkik ve Arama Dergisi, 155, 33–47. http://dx.doi.org/10.19076/mta.53825
  • Sançar, T., Zabci, C., & Akyüz, H.S. (2011). Quaternary activity of Varto Fault Zone (Eastern Anatolia) and new ideas about 1966 Varto earthquake, EGU General Assembly, Geophysical Research Abstracts. 13, EGU2011-9498-1 Vienna, Austria
  • Sançar, T., Zabci, C., Akyüz, H.S., Sunal G., & Villa I.M. (2015). Distributed transpressive continental deformation: the Varto Fault Zone, eastern Turkey. Tectonophysics, 661, 99–111. https://doi.org/10.1016/j.tecto.2015.08.018
  • Salvany, J. M. (2004). Tilting neotectonics of the Guadiamar Drainage Basin, SW Spain. Earth Surface Processes and Landforms, 29 (2), 145-160. https://doi.org/10.1002/esp.1005
  • Schumm, S. A. (1956). Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin, 67(5), 597–646. https://doi.org/10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2
  • Schumm, S. A., Dumont. J. F., & Holbrook, J. M. (2000). Active tectonics and alluvial rivers. Cambridge University Press. 276 sayfa.
  • Sharma, I. (2020). Investigation of active tectonics in the Ramganga Basin Eastern Kumaon Himalaya using geomorphic Indices derived from digital elevation models. [Ph. D. Thesis, Geology of the Aligarh Muslim University Department of geology].
  • Silva, P. G., Goy, J. L., Zazo, C., & Bardajı́ T. (2003). Fault-generated mountain fronts in southeast Spain: Geomorphologic assessment of tectonic and seismic activity. Geomorphology, 50(1–3), 203–225. https://doi.org/10.1016/S0169-555X(02)00215-5
  • Sol, B. (2017). Mudurnu Çayı Havzası'nın (Taşburnu-Abant Gölü batısı arası) flüvyo-tektonik jeomorfolojisi. [Doktora Tezi, İstanbul Üniversitesi Sosyal Bilimler Enstitüsü].
  • Strahler, A. N. (1952). Hypsometric (area-altitude) analysis of erosional topography. Geological Society of America Bulletin, 63(11), 1117–1142. https://doi.org/10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2
  • Strahler, A. N. (1964). Quantitative geomorphology of drainage basins and channel net work. In: Chow, V., (Ed.), Handbook of applied hydrology, McGraw Hill, New York, 39-76.
  • Şaroğlu, F. (1986). Doğu Anadolu’nun Neotektonik dönemde jeolojik ve yapısal evrimi. Maden Tetkik ve Arama Genel Müdürlüğü Jeoloji Etütleri Dairesi. https://eticaret.mta.gov.tr/index.php?route=product/product&product_id=7857
  • Tarhan, N. (2002). 1/500.000 ölçekli Türkiye jeoloji haritaları Erzurum paftası. Ankara: Maden Tetkik ve Arama Genel Müdürlüğü
  • Tonbul, S. (1990). Bingöl Ovası ve çevresinin iklimi. Fırat Üniversitesi Sosyal Bilimler Dergisi, 4(1), 347–374.
  • Tonbul, S. (1996). Bingöl Dağı’nın volkan morfolojisi ve volkanizma-tektonik ilişkileri. Fırat Üniversitesi Sosyal Bilimler Dergisi, 8(1), 311–340.
  • Tonbul, S. (1997). Bingöl Dağı’nda buzul şekilleri. Ankara Üniversitesi Türkiye Coğrafyası Araştırma ve Uygulama Merkezi Dergisi, 6, 347–374.
  • Topal, S., & Özkul, M. (2018). Determination of relative tectonic activity of the Honaz fault (SW Turkey) using geomorphic indices. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(6), 1200–1208. doi: 10.5505/pajes.2017.18199
  • Topal, S. (2019). Karacasu Fayı’nın (GB Türkiye) göreceli tektonik aktivitesinin jeomorfik indislerle incelenmesi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 9(1), 37–48. https://doi.org/10.17714/gumusfenbil.409561
  • Wallace, R. E. (1968). Earthquake of August 19, 1966. Varto Area, eastern Turkey. Bulletin of the Seismological Society of America, 58(1), 11–45. https://doi.org/10.1785/BSSA0580010011
  • Wells, S. G., Bullard, T. F., Menges, C. M., Drake, P. G., Karas, P. A., Kelson, K. I., Ritter,J. B., & Wesling, J. R. (1988). Regional variations in tectonic geomorphology along a segmented convergent plate boundary pacific coast of Costa Rica. Geomorphology, 1(3), 239–265. https://doi.org/10.1016/0169-555X(88)90016-5
  • Willgoose, G., & Hancock, G. (1998). Revisiting the hypsometric curve as an indicator of form and process in transport-limited catchment. Earth Surface Processes and Landforms, 23(7), 611–623. https://doi.org/10.1002/(SICI)1096-9837(199807)23:7<611::AID-ESP872>3.0.CO;2-Y
Gümüşhane Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2011
  • Yayıncı: GÜMÜŞHANE ÜNİVERSİTESİ