Endüstriyel bir 3 boyutlu yazıcı ile imal edilen ABS malzemeli parçaların boyut hatalarının incelenmesi

Eklemeli imalatta parça boyut hataları temel problemler arasında yerini almaktadır. Cihaz pozisyon hatalarına, parça çekmesine ya da büzülmesine ve STL dosya hatalarına bağlı olarak ortaya çıkan parça boyut hataları üretkenliği olumsuz etkilemektedir. Genel olarak, her bir cihaz-malzeme-imalat parametresi-geometri kombinasyonuna göre parçalarda farklı boyut hataları meydana gelebilmektedir. Dolayısıyla bu hataların hesaplanması ve analiz edilmesi son kullanıcılar ve cihaz imalatçıları açısından büyük önem taşımaktadır. Bu kapsamda adı geçen çalışmada endüstriyel bir üç boyutlu yazıcı olan Zaxe Z1 cihazı ile ABS malzemeli parça imalatında parça boyut hataları araştırılmıştır. İlk olarak, farklı boyutlarda daire, kare ve eşkenar üçgen geometrilerini üzerinde barındıran bir test parçası tasarlanmıştır. Ardından, test parçalarının imalat tablasındaki konumuna göre ortaya çıkan hataları incelemek amacıyla imalat tablasının farklı bölgelerine toplam 5 adet test parçası konumlandırılarak imalatı gerçekleştirilmiştir. Üçüncü adımda, bu test parçaları üzerinde yer alan tüm test geometrileri koordinat ölçme makinesi ile taranarak iki boyutlu profilleri elde edilmiştir. Dördüncü adımda ise, geliştirilen en küçük kareler tabanlı geometri uydurma algoritması ile taranan profillere geometri uydurma yapılmıştır. Son olarak da, uydurulan ve tasarlanan geometriler arasındaki profil toleransı değerleri hesaplanmıştır. Sonuçlar analiz edildiğinde, profil tolerans değerlerinin imalat tablasındaki konuma ve geometriye bağlı olarak değişkenlik sergilediği görülmüştür ve imal edilen tüm geometriler tasarlanan boyutlarından daha küçüktür. Başka bir ifadeyle tüm geometriler çekmeye maruz kalmıştır. Genel olarak bakıldığında, geometri boyutu arttıkça profil tolerans değerlerinde artış söz konusudur. Tüm geometriler için ortalama profil tolerans değeri 0.1987 mm olarak hesaplanmıştır. Bu değerin yarısı, yani ≈+0.1 mm, kadar tarama yollarının kaydırılması ile daha hassas geometriler elde edilebilir.

Investigation of dimensional form errors of parts manufactured with an industrial 3-dimensional printer using ABS material

Part dimensional form errors are among the main problems in additive manufacturing. Part dimensional form errors due to device position errors, part shrinkage, and STL file errors negatively affect productivity. In general, different dimensional form errors may occur in parts according to each device-material-manufacturing parameter-geometry combination. Therefore, the calculation and analysis of these errors is of great importance for end users and device manufacturers. With this scope, in this study, part dimensional form errors were investigated in the manufacturing of parts using ABS material with the Zaxe Z1 device which is an industrial three-dimensional printer. First, a test part accommodating different sizes of circle, square and equilateral triangle geometries was designed. Then, in order to examine the errors that occur according to the position of the test parts on the building platform, a total of 5 test parts were positioned in different regions of the building platform and manufactured. In the third step, all the test geometries on these test parts were scanned with a coordinate measuring machine and their two-dimensional profiles were obtained. In the fourth step, geometry fitting was performed to the scanned profiles with the least squares-based geometry fitting algorithm. Finally, the profile tolerance values between the fitted and designed geometries were calculated. When the results are analyzed, it has been seen that the profile tolerance values vary depending on the location in the building platform and geometry, and all the manufactured geometries are smaller than their designed dimensions. In other words, all the geometries were subjected to shrinkage. Generally speaking, there is an increase in the profile tolerance values as the geometry size increases. The average profile tolerance value for all the geometries was calculated as 0.1987 mm. By offsetting the scanning paths by half of this value, i.e., ≈+0.1 mm, more precise geometries can be obtained.

___

  • Alsoufi, M. S., & Elsayed, A.E. (2018). Surface roughness quality and dimensional accuracy—a comprehensive analysis of 100% infill printed parts fabricated by a personal/desktop cost-effective FDM 3D printer. Materials Sciences and Applications, 9, 11-40. https://doi.org/10.4236/msa.2018.91002.
  • Ashtankar, K. M., Kuthe, A. M., & Rathour, B. S. (2016). Effect of build orientation on mechanical properties of rapid prototyping (fused deposition modeling) made acrylonitrile butadiene styrene (ABS) parts. Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition. Volume 11: Emerging Technologies (pp.1–7), San Diego, California, USA. https://doi.org/10.1115/IMECE2013-63146.
  • Bahnini, I., Uz Zaman, U. K., Rivette, M., Bonnet, N., & Siadat, A. (2020). Computer-aided design (CAD) compensation through modeling of shrinkage in additively manufactured parts. The International Journal of Advanced Manufacturing Technology, 106(9), 3999-4009. https://doi.org/10.1007/s00170-020-04924-8.
  • Bähr, F., & Westkämper, E. (2018). Correlations between influencing parameters and quality properties of components produced by fused deposition modeling. Procedia CIRP, 72, 1214-1219. https://doi.org/10.1016/j.procir.2018.03.048.
  • Dilberoglu, U. M., Simsek, S., & Yaman, U. (2019). Shrinkage compensation approach proposed for ABS material in FDM process. Materials and Manufacturing Processes, 34(9), 993-998. https://doi.org/10.1080/10426914.2019.1594252.
  • Gavin, H. P. (2019). The Levenberg-Marquardt algorithm for nonlinear least squares curve-fitting problems. Department of Civil and Environmental Engineering, Duke University, 1-19.
  • Hafsa, M. N., Ibrahim, M., Wahab, M. S., & Zahid, M. S. (2014). Evaluation of FDM pattern with ABS and PLA material. Applied Mechanics and Materials, 465, 55–59. https://doi.org/10.4028/www.scientific.net/AMM.465-466.55.
  • Hämäläinen, J. P. (2017). Semi-crystalline polyolefins in fused deposition modeling [Master thesis, Tampere University of Technology, Tampere, Finlandiya].
  • ISO 1101:(E) (2012). Geometrical product specifications (GPS)–geometrical tolerancing–tolerances of form, orientation, location and run-out. International Organization for Standardization, Geneva, Switzerland.
  • Jia, P. (2017). Fitting a parametric model to a cloud of points via optimization methods [Ph.D. thesis, Syracuse University, New York, USA].
  • Kacmarcik, J., Spahic, D., Varda, K., Porca, E., & Zaimovic-Uzunovic, N. (2018). An investigation of geometrical accuracy of desktop 3D printers using CMM. IOP Conference Series: Materials Science and Engineering, 393(1), 012085. https://doi.org/10.1088/1757-899X/393/1/012085. Kiran, K. (2021). Performance analysis of steepest descent-line search condition combinations in nonlinear least squares fitting of CMM data. European Journal of Science and Technology, 28, 1190–1196. https://doi.org/10.31590/ejosat.1012096.
  • Kiran, K. (2022). Performance evaluation of a conjugate gradient method considering step length computation techniques in geometry fitting of coordinate measuring machine data. Measurement, 196, 111202. https://doi.org/10.1016/j.measurement.2022.111202.
  • Knoop, F., & Schoeppner, V. (2017). Geometrical accuracy of holes and cylinders manufactured with fused deposition modeling. Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium (pp. 2757–2776), Austin, Texas, USA. http://dx.doi.org/10.26153/tsw/16990.
  • Lieneke, T., Künneke, T., Schlenker, F., Denzer, V., & Zimmer, D. (2019). Manufacturing accuracy in additive manufacturing: a method to determine geometrical tolerances. Joint Special Interest Group meeting between euspen and ASPE Advancing Precision in Additive Manufacturing Ecole Centrale de Nantes, France.
  • Melenka, G. W., Schofield, J. S., Dawson, M. R., & Carey, J. P. (2015). Evaluation of dimensional accuracy and material properties of the MakerBot 3D desktop printer. Rapid Prototyping Journal, 21(5), 618–627. https://doi.org/10.1108/RPJ-09-2013-0093.
  • Minetola, P., Iuliano, L., & Marchiandi, G. (2016). Benchmarking of FDM Machines through Part Quality Using IT Grades. Procedia CIRP, 41, 1027–1032. https://doi.org/10.1016/j.procir.2015.12.075.
  • Pascu, N. E., Dobrescu, T. G., Balan, E., Jiga, G., & Adir, V. (2018). Design of ABS plastic components through FDM process for the quick replacement of outworn parts in a technological flow. Materiale Plastice, 55(2), 211–214. https://doi.org/10.37358/MP.18.2.4997.
  • Pennington, R. C., Hoekstra, N. L., & Newcomer, J. L. (2005). Significant factors in the dimensional accuracy of fused deposition modelling. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 219(1), 89–92. https://doi.org/10.1243/095440805X6964.
  • Roberson, D. A., Espalin, D., & Wicker, R. B. (2013). 3D printer selection: A decision-making evaluation and ranking model. Virtual and Physical Prototyping, 8(3), 201–212. https://doi.org/10.1080/17452759.2013.830939.
  • Sudin, M. N., Shamsudin, S. A., & Abdullah, M. A. (2016). Effect of part features on dimensional accuracy of FDM model. ARPN Journal of Engineering and Applied Sciences, 11(13), 8067–8072.
  • Yadav, D. K., Srivastava, R., & Dev, S. (2019). Design & fabrication of ABS part by FDM for automobile application. Materials Today: Proceedings, 26, 2089–2093. https://doi.org/10.1016/j.matpr.2020.02.451.
  • Yaman, U. (2018). Shrinkage compensation of holes via shrinkage of interior structure in FDM process. The International Journal of Advanced Manufacturing Technology, 94(5), 2187-2197. https://doi.org/10.1007/s00170-017-1018-2.