Betonun Mekanik Özelliklerinin Çarpma Dayanımına Etkisi

Bu çalışmada; betonun mekanik özelliklerinden olan basınç, eğilmede çekme ve yarmada çekme dayanımlarının çarpma dayanımı üzerindeki etkileri incelenmiştir. Bu amaç doğrultusunda maksimum agrega çapı 4, 8 ve 16 mm, su/çimento (S/Ç) oranı ise 0.50 ve 0.55 olan altı seri numuneleri hazırlanmıştır. Hazırlanan numuneler üzerinde basınç, eğilme, yarma ve Charpy darbe dayanımları belirlenmiştir. Yapılan deneysel çalışmalar sonucunda; betonun mekanik özelliklerini agrega çapındaki artış olumlu etkilerken S/Ç oranındaki artış olumsuz yönde etkilemiştir. Betonun çarpma dayanımındaki değişim de aynı şekilde olmuştur. Fakat çarpma dayanımı S/Ç oranındaki artıştan daha az etkilenmiştir.

The effect of mechanical properties of concrete on ımpact strength

In this study, impact stregth of concrete is investigated with the effect of mechanical properties such as compressive strength, flexural tensile strength and splitting tensile strength. For this purpose, six serial specimens with three different maximum aggregate diameter (4, 8 and 16 mm) and whose water/cement (w/c) ratio of 0.50 to 0.55 were prepared. The compressive, bending, splitting and impact strength of the prepared specimens were determined. As a result of study; The mechanical properties of the concrete were positively effected by the increase in the aggregate size, while the icrease in the W/C ratio adversely effected. The change in the impact strength of concrete has also been the same. But the impact strength is less effected than the increase in W/C ratio.

___

  • Arıcı, E., Dursun, R. ve İnce, R., 2007. Determination of Impact Strength of Concrete. 8th International Fracture Conference, November 2007, İstanbul, Turkey, 628-633.
  • Arıcı, E., 2010. Effect of Compressıve Strength on Impact Strength of Concrete. Journal of Technical, 9 (1), 1-9.
  • Barb, S., Hanson, D., 1974. Investigation of Fiber Reinforced Breakwater Armour Units. Fiber Reinforced Concrete Publication SP-44, American Concrete Institute, Detroit, 434 p.
  • Edgington, J., Hannant, D. J. ve Williams, G.I.T., 1974. Steel Fibre Reinforced Concrete. Building Research Establishment Current Paper, The Establishment, 46p.
  • Erdoğan, T.Y., 2003. Beton. ODTÜ Geliştirme Vakfı Yayıncılık ve İletişim A.Ş Yayınları, Ankara, 446p.
  • Jamrozy, Z. ve Swamy, R.N., 1979. Use of Steel Fibre Reinforcement for Impact Resistance and Machinery Foundations. International Journal of Cement Composites, 1 (2), 65-75.
  • Johnston, C. D., 1974. Steel Fiber Reinforced Mortar and Concrete. A Review of Mechanical Properties Fiber Reinforced Concrete, Publication SP-44, American Concrete Institute.Detroit, 127-142.
  • Kantar, E., Arslan, A. ve Anıl, Ö. 2011. Effect of Concrete Compressive Strength Variation on Impact Behaviour. Engineering Architecture Faculty journal Gazi University, 26 (1), 115-123.
  • Mather, B., 1994. Cement and Concrete Terminology. American Concrete Institute, 116 (R-90), 1-68.
  • Murtiadi, S., 1999. Behavior of High-Strength Concrete Plates under Impact Loading. Master Thesis, Faculty of Engineering and Applied Science Mernorial University of Newfoundland, 17p.
  • Selvi, M., 2008. Beton Dayanımındaki Değişimin Çarpma Dayanımına Olan Etkisinin Deneysel ve Sonlu Elemanlar Yöntemiyle İncelenmesi. Yüksek Lisans Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü. Ankara,119 s.
  • Verhagen, A. H., 1978. Impact Testing of Fibre Reinforced Concrete: Reflection on Possible Test Methods, Testing and Test Methods of Fibre Cement Composites RILEM Symposium Edited by R. N. Swamy, The Construction Press Ltd., Hornby, p.99-105.
  • Williamson, G. R., 1965. Fibrous Reinforcements for Portland Cement Concrete. Technical Report. 1, 1-500.