Arteriyal Kan Basınç Sinyallerinin Elektriksel Analojisi

Bu çalışmada, fizyoloji alanında karmaşık bir sistem olarak kabul edilen insan kardiyovasküler sistemin sahip olduğu mekanizmaların ve dinamiklerinin anlaşılabilmesine fayda sağlayacak elektriksel bir devre modeli önerilmektedir. Windkessel model olarak tanımlanan elektriksel devre modeli, kalpten pompalanan kan basıncının arteriyel sistemdeki karakteristik etkisinin gözlemlenmesinde önemli rol oynamaktadır. Windkessel modelin girişine entegre ettiğimiz ayrı bir elektrik devre modeli, ortalama arteriyel kan basıncı sinyallerinin beklenen değer aralıklarında gözlemlenmesini sağlamaktadır. Bu çalışmada ele alınan ve geliştirmeye çalıştığımız Windkessel devre modeli laboratuvar ortamında kurulumu gerçekleştirilmiş ve sonuçları gözlemlenmiştir. Kalp ve arteriyel sistem ilişkisinde rol alan parametre sayılarının arttırılarak, Windkessel modelin geliştirilmesine bir alt yapı olması açısından bu çalışmanın literatüre katkı sağlayacağı düşünülmektedir.

Electrical Analogue of Arterial Blood Pressure Signals

In this study, we propose an electrical circuit model that will be useful for understanding of the mechanisms and dynamics of the human cardiovascular system, which is considered as a complex system in the field of physiology. The electrical circuit model, defined as the Windkessel model, plays an important role in the observation of the characteristic effect of the blood pressure on the arterial system. An electrical circuit model, which we have connected to the input terminals of the Windkessel model, ensures that the mean arterial blood pressure signals are observed within the expected range of values. The Windkessel circuit model that we have tried to develop in this study was constructed in a laboratory environment and the results were observed. It is thought that this study will contribute to the literature in terms of the development of the Windkessel model by increasing the number of parameters involved in the models of heart and arterial system.

___

  • Abdolrazaghi, M., Navidbakhsh, M. and Hassani, K., 2010. Mathematical Modelling and electrical Analog Equilavent of the Human Cardiovascular System, Cardiovasc Eng, 10, 45-51.
  • Al-Jaafreh, M. and Al-Jumily, A., 2005. Multi Agent System for Estimation of Cardiovascular Parameters. 1st International Conference on Computers, Communications, & Signal Processing with Special Track on Biomedical Engineering, 269-299.
  • Bora, Ş., Evren, V., Emek, S. and Çakırlar, I., 2017. Agent-based modeling and simulation of blood vessels in the cardiovascular system. Simulation: Transactions of the Society for Modeling and Simulation International, 1-16. Doi: 0037549717712602.
  • Capoccia, M., 2015. Development and Characterization of the Arterial Windkessel and Its Role During Left Ventricular Assist Device Assistance, Artificial Organs, 39 (8), 138-153.
  • Creigen, V., Ferracina, L., Hlod, A., Mourik, S., Sjauw, K., Rottschafer, V., Vellekoop, M. and Zegeling P., 2007. Modeling a Heart Pump. European Study Group Mathematics with Industry, Utrecht.
  • De Pater, L. and Van Den Berg, J.W., 1964. An Electrical Analogue of the Entire Human Circulatory System. Med. Electron. Biol. Engng., 2, 161-166.
  • Fazeli, N. and Hahn, J., 2012. Estimation of cardiac output and peripheral resistance using square-wave-approximated aortic flow signal. Frontiers in Physiology, 3. Doi: 10.3389/fphys.2012.00298.
  • Frank, O., 1899. Die Grundform des arteriellen Pulses. Z Biol, 37, 483-526.
  • Guyton, A. C., Coleman, T. G. and Granger H. J., 1972. Circulation: Overall Regulation. Annu. Rev. Physiol., 34, 13-44.
  • Guyton, A. C. and Hall, J.E., 2006. Textbook of Medical Physiology. Elseiver Inc, 11th ed.
  • Jahangir, M., 2016. Anatomy and Physiology for Health Professionals. Second Edition, Chapter 13, p.207-223, ISBN-13: 9781284036947.
  • Khoo, M. C. K., 2000. Physiological Control Systems: Analysis, Simulation, and Estimation. John Wiley & Sons, Inc., Hoboken, New Jersey.
  • Kinski, R., 1982. Applied fluid mechanics, McGrawhille.
  • Kokalari, I., Karaja, T. and Guerrisi, M., 2013. Review on lumped parameter method for modeling the blood flow in systemic arteris. J. Bimedical Science and Engineering, 6, 92-99. Doi: 10.4236/jbise.2013.61012.
  • Marieb, E. N. and Hoehn, K., 2010. Human Anatomy and Physiology. 8th ed., San Francisco: Benjamin Cummings.
  • Mei, C. C., Zhang, J. and Jing, H. X., 2018. Fluid mechanics of Windkessel effect. Medical & Biological Engineering & Computing. Doi: 10.1007/s11517-017-1775-y.
  • Oertel, H., 2005. Modelling the Human Cardiac Fluid Mechanics. University of Karlsruhe.
  • Olufsen, M. S., 2001. A One-Dimnsional Fluid Dynamic Model of the Systemic Arteries. Computational Modeling in Biological Fluid Dynamics, 167-187, Springer-Verlag New York, Inc.
  • Quarteroni, A., Veneziani, A. and Zunino, P., 2002. Mathematical and Numerical Modeling of Solute Dynamics in Blood Flow and Arterial Walls. SIAM Journal on Numerical Analysis, 39 (5), 1488-1511.
  • Selek, H. S., 2017. Elektronik-1 Analog Elektronik, 150-161.
  • URL-1, http://hyperphysics.phy-astr.gsu.edu/hbase/electric/watcir2.html. 1 Haziran 2018.
  • Westerhof, N., Lankhaar, J. and Westerhof B. E., 2009. The arterial Windkessel. Medical & Biological Engineering & Computing, 47, 131-141. Doi: 10.1007/s11517-008-0359-2.
  • Wu, Y., Allaire, P., Tao, G. and Olsen, D., 2005. Modeling, Estimation and Control of Cardiovascular Systems with A Left Ventricular Assist Device. American Control Conference.