YÜKSEK HIZLI DEPLASMAN TİPİ GEMİLERDEKİ KARŞILAŞILAN SPREY PROBLEMİNİ AZALTMA AMAÇLI TAKINTI DİZAYNI

Bu çalışmada yüksek hızlı deplasman gemilerinde karşılaşılan sprey probleminin çözümüne yönelik takıntı dizaynı yapılmıştır. Gemi baş bodoslamasında su hattındaki ani basınç değişiminden kaynaklanan bu problemin çözümü için üst tarafında alçak basınç oluşturacak NACA 6412 serisi hidrofoil kullanılarak sprey oluşumu önemli ölçüde düşürülmüştür. Takıntı, geminin bodoslamasına su hattına göre farklı yüksekliklere monte edilmiş ve sprey oluşumu incelenmiştir. Tüm deney sonuçlarına ek olarak HAD analizleri ile çalışmalar desteklenmiştir

In the current work, a research carried out for the appendage design of high-speed displacement ships to prevent the problem against the water spray at the stem. The pressure decreases on the waterline level immediately and this leads to water spray problems. It is possible to avoid this fact by using an appendage that is made of a NACA 6412 profile. The water spray is reduced by means of the profile. During the tests, profile is located to different heights, according to water level and spray occurrence is examined. The towing tank tests have been compared with Computational Fluid Dynamic CFD results

___

  • Savitsky, D., & Breslin, J. P. (1958). On The Main Sprey Generated By Planning Surfaces. New Jersey: Experimental Towing Tank Stevens Institute of Technology.
  • Seo, J. (2016). Model tests on resistance and seakeeping performance of wave- piercing high-speed vessel with spray rails. International Journal of Naval Architecture and Ocean Engineering, 8, 442-455
  • Salas, M., & Tampier, G. (2013, January 12). Assessment of appendage effect on forward resistance. Ciencia y tecnología de buques, 7(13).
  • Iacono, M. (2014). Hydrodynamics of Planing Hull by HAD. (Master Thesis). University Of Naples “Federico I I”/Department Of Industrial Engineering, Nepal.
  • Kohansal, A. R., Ghassemi, H., & Ghaisi, M. (2009). Hydrodynamic characteristics of high speed planing hulls, including trim effects. Turkish Journal of Engineering and Environmental Sciences, 155-170. doi:10.3906/muh-0910-59
  • Mizutani, K., Ibata, S., Aoyama, Y., & Ikeda, Y. (2015). A Role of Spray on the Added Resistance. Proceedings of the Twenty-fifth (2015) International Ocean and Polar Engineering Conference (pp. 1025-1030). Hawaii: International Society of Offshore and Polar Engineers (ISOPE).
  • Danışman, D. B., & Gören, Ö. (2005). Nonlinear Wave Resistance Computations as a Design Tool in Hull Form Improvement Studies. International Congress of International Maritime Association of the Mediterranean. Lisbon.
  • Francis, N., Gerard, D., Hua, L., Chi, Y. (2013). Ship Bow Waves. Journal of Hydrodynamic. 25(4), 491-501 doi: 10.1016/S1001-6058(11)60388-1
  • Landrini, M., Cologrossi, A., Greco, M., Tulin, M.P. (2012). The fluid mechanics of splashing bow waves on ships: A hybrid BEM–SPH analysis. Ocean Engineering. 53, 111-127.
  • Horn, R. and P. G. Vicente (1998). Comprehensive analysis of turbulent flows around an NACA 0012 profile, including dynamic stall effects: International Journal of Computer Applications in Technology 11(3-5): 230-251.
  • ITTC 2017, 28th International Towing Tank Conference. Quality System manual
  • Malin, Steinar (2013). Application of CFD to seakeeping: Master Thesis in Norwegian University of Science and Technology Department of Marine Technology.