BİYOBAZLI NANOKOMPOZİTLER VE GIDA AMBALAJLAMADAKİ UYGULAMALARI

Petrol bazlı plastiklerin çevreye olumsuz etkileri nedeniyle kullanımını azaltmak için biyobazlı polimerlerin kullanımı artış göstermektedir. Biyopolimerler genellikle, nanokompozit oluşturmak için en az bir boyutu nano olan zenginleştirme ajanları (nanopartiküller, dolgular) eklenerek geliştirilebilen mekanik ve bariyer özelliklere sahiptir. Nanopartiküller, mikro boyutlu hallerine oranla daha yüksek yüzey alanına sahip olup dolgu ile polimer arasındaki etkileşimi ve sonuç materyalin performansını arttırır. Nanoyapılar aynı zamanda, antimikrobiyel özellikler, oksijen yakalama, enzim immobilizasyonu, uygun olmayan sıcaklık ya da oksijen seviyesini belirten sensörler gibi aktif özellikler de sağlayabilmektedir. Bu özet çalışması, polilaktik asit, polikaprolakton, polihidroksialkonat, nişasta ve kitosan gibi çok çalışılan biyobazlı nanokompozitler ve bunların gıda ambalajlama uygulamaları üzerinedir. 

BIO-BASED NANOCOMPOSITES AND FOOD PACKAGING APPLICATIONS

There is growing interest in developing bio-based polymers to reduce the use of conventional nonbiodegradable petroleum-based plastics because of their adverse effect on environment. However, biopolymers usually have poor mechanical and barrier properties, which may be improved by adding reinforcing agents with at least one nanoscale dimension (nanoparticles, fillers), forming nanocomposites. Nanoparticles have proportionally larger surface area than their microscale counterparts, which favor the filler–matrix interactions and the performance of the resulting material. Nanostructures may also provide active properties such as antimicrobial properties, oxygen scavenging ability, enzyme immobilization, or indication of the degree of exposure to some detrimental factors like inadequate temperatures or oxygen levels. This review focuses on the properties of the most studied bio-based nanocomposites such as chitosan, starch, polycaprolactone, polylactic acid and polyhydroxy alconate and their food packaging applications.

___

  • Ahmed, J., Hiremath, N., Jacob, H. (2017b). Antimicrobial efficacies of essential oils/nanoparticles incorporated polylactide films against L. monocytogenes and S. typhimurium on contaminated cheese. International Journal of Food Properties, 20(1):53-67.
  • Ahmed, J., Mulla, M., Arfat, Y.A., Thai, L.A. (2017a). Mechanical, thermal, structural and barrier properties of crab Shell chitosan/graphene oxide composite films. Food Hydrocolloids, 71:141-148.
  • Alexandre, M., Dubois, P. (2000). Polymer-Layered Silicate Nanocomposites: Preparation, Properties and Uses of a New Class of Materials. Materials Science and Engineering Reports, 28(1-2):1-63.
  • Alger, H., Momcilovic, D., Carlander, D., Duncan, T.V. (2014). Methods to evaluate uptake of engineered nanomaterials by the alimentary tract. Comprehensive Reviews in Food Science and Food Safety, 13(4):705–29.
  • Auras, R.A., Singh, P.A., Singh, J.J. (2005). Evaluation of oriented poly(lactide) polymers vs. existing PET and oriented PS for fresh food service containers. Packaging Technology and Science, 18:207-216.
  • Averous, L., Boquillon, N. (2004). Biocomposites based on plasticized starch: thermal and mechanical behaviours. Carbohydrate Polymers, 56(2):111-122.
  • Ben-Sasson, M., Zodrow, K.R., Genggeng, Q., Kang, Y., Giannelis, E.P., Elimelech, M. (2014). Surface Functionalization of Thin-Film Composite Membranes with Copper Nanoparticles for Antimicrobial Surface Properties. Environmental Science and Technology, 48 (1):384–393.
  • Benucci, I., Liburdi, K., Cacciotti, I., Lombardelli, C., Zappino, M., Nanni, F., Estia, M. (2018). Chitosan/clay nanocomposite films as supports for enzyme immobilization: An innovative green approach for winemaking applications. Food Hydrocolloids, 74:124-131.
  • Bi, L., Yang, L., Narsimhan, G., Bhunia, A.K., Yao, Y. (2011). Designing carbohydrate nanoparticles for prolonged efficacy of antimicrobial peptide. Journal of Controlled Release, 150:150–156.
  • Borm, P.J.A., Robbins, D., Haubold, S., Kuhlbusch, T., Fissan, H., Donaldson, K., Schins, R., Stone, V., Kreyling, V., Lademann, J., Krutmann, J., Warheit, D., Oberdorster E. (2006). The potential risks of nanomaterials: a review carrie out for ECETOC. Particle and Fibre Toxicology, 3:11.
  • Brown, H., Williams, J. (2003). Packaged product quality and shelf life. In: Food packaging technology, Coles, R., McDowell, D., Kirwan, M.J. (eds.), Blackwell/CRC Press, Boca Raton, FL, pp. 65-94.
  • Caseli, L., Santos, D.S., Foschini, M., Gonçalves, D., Oliveira, O.N. (2007). Control of catalytic activity of glucose oxidase in layer-by-layer films of chitosan and glucose oxidase. Materials Science and Engineering, C27:1108–1110.
  • Chandrasekaran, G., Han, H.K., Kim, G.J., Shin, H.J. (2011). Antimicrobial activity of delaminated aminopropyl functionalized magnesium phyllosilicates. Applied Clay Science, 53:729–36
  • Chang, P.R., Jian, R., Yu, J., Ma, X. (2010). Fabrication and characterisation of chitosan nanoparticles/plasticised-starch composites. Food Chemistry, 120:736–740 Dallas, P., Sharma, V.K., Zboril, R. (2011). Silver polymeric nanocomposites as advanced antimicrobial agents: classification, synthetic paths, applications, and perspectives. Advances in Colloid and Interface Science, 166:119–135.
  • Dasan, Y.K., Bhat, A.H., Ahmad, F. (2017). Polymer blend of PLA/PHBV based bionanocomposites reinforced with nanocrystalline cellulose for potential application as packaging material. Carbohydrate Polymers, 157:1323–1332.
  • Dong, C., Song, D., Cairney, J., Maddan, O.L., He, G., Deng, Y. (2011). Antibacterial study of Mg(OH)2 nanoplatelets. Materials Research Bulletin, 46:576–582.
  • Echegoyen Y, Nerín C. 2013. Nanoparticle release from nano-silver antimicrobial food containers. Food and Chemical Toxicology 62:16–22.
  • Elen, K., Murariu, M., Peeters, R., Dubois, P., Mullens, J., Hardy, A., Van Bael, M.K. (2012). Towards high-performance biopackaging: barrier and mechanical properties of dual-action polycaprolactone/zinc oxide nanocomposites. Polymers for Advanced Technologies, 23(10):1422–1428.
  • Elsaesser, A., Howard, C.V. 2012. Toxicology of nanoparticles. Advances in Drug Delivery Reviews 64(2):129–137.
  • Fernandez, A., Cava, D., Ocio, M.J., Lagaron, J.M. (2008). Perspectives for biocatalysts in food packaging. Trends in Food Science & Technology, 19(4):198–206. Gao, W., Dong, H., Hou, H., Zhang, H. (2012). Effects of clays with various hydrophilicities on properties of starch–clay nanocomposites by film blowing. Carbohydrate Polymers, 88:321–328.
  • Gontard, N., Peyron, S., Lagaron, J.M., Echegoyen, Y., Guillaume, C. (2017). Nanotechnologies for Active and Intelligent Food Packaging: Opportunities and Risks. In: Nanotechnology in Agriculture and Food Science, Axelos, M.A.V., de Voorde, M.V. (eds.), Wiley-VCH, India, pp. 177-197.
  • Gopinath, S., Sugunan, S. (2007). Enzymes immobilized on montmorillonite K 10: effect of adsorption and grafting on the surface properties and the enzyme activity. Applied Clay Science, 35(1–2):67–75.
  • Grigoriadi, K., Giannakas, A., Ladavos, A.K., Barkoula, N.M. (2015). Interplay between processing and performance in chitosan-based clay nanocomposite films. Polymer Bulletin, 72(5):1145–1161.
  • Gutierrez, T.J., Ponce, A.G., Alvarez, V.A. (2017). Nano-clays from natural and modified montmorillonite with and without added blueberry extract for active and intelligent food nanopackaging materials. Materials Chemistry and Physics, 194:283-292.
  • He, Y., Kong, W., Wang, W., Liu, T., Liu, Y., Gong, Q., Gao, J. (2012). Modified natural halloysite/potato starch composite films. Carbohydrate Polymers, 87:2706–2711.
  • Hernandez-Vargas, J., Gonzalez-Campos, J.B., Lara-Romero, J., Prokhorov, E., Luna-Barcenas, G., Avina, J.A., Gonzalez-Hernandez, J. (2013). Chitosan/MWCNTs-decorated with silver nanoparticle composites: Dielectric and antibacterial characterization. Journal of Applied Polymer Science, 131(9):40214(1-13).
  • Kakroodi, A.R., Kazemi, Y., Nofar, M., Park, C.B. (2017). Tailoring poly(lactic acid) for packaging applications via the production of fully bio-based in situ microfibrillar composite films. Chemical Engineering Journal, 308:772–782.
  • Kumar, A.P., Depan, D., Tomer, N.S., Singh, R. (2009). P. Nanoscale particles for polymer degradation and stabilization: trends and future perspectives. Progress in Polymer Science, 34:479–515.
  • Kumar, P., Sandeep, K.P., Alavi, S., Truong, V.D., Gorga, R.E. (2010). Effect of type and content of modified montmorillonite on the structure and properties of bio-nanocomposite films based on soy protein isolate and montmorillonite. Journal of Food Science, 75(5):N46–56.
  • Lopez-Cordoba, A., Medina-Jaramillo, C., Pineros-Hernandez, D., Goyanes, S. (2017). Cassava starch films containing rosemary nanoparticles produced by solvent displacement method. Food Hydrocolloids, 71:26-34.
  • Mao, X., Nguyen, T.H.D., Lin, M., Mustapha A. (2016). Engineered Nanoparticles as Potential Food Contaminants and Their Toxicity to Caco-2 Cells. Journal of Food Science, 81(8):T2107–T2113.
  • Mihindukulasuriya, S.D.F., Lim, L.T. (2013). Oxygen detection using UV-activated electrospun poly (ethylene oxide) fibers encapsulated with TiO2 nanoparticles. Journal of Materials Science, 48:5489-5498.
  • Mihindukulasuriya, S.D.F., Lim, L.T. (2014). Nanotechnology development in food packaging: A review. Trends in Food Science & Technology, 40(2):149-167. Mills, A., Doyle, G., Peiro, A. M., Durrant, J. (2006). Demonstration of a novel, flexible, photocatalytic oxygen-scavenging polymer film. Journal of Photochemistry and Photobiology A: Chemistry, 177:328–331
  • Mittal, V. (2011). Bio-nanocomposites: future high value materials. In: Nanocomposites with biodegredable polymers. Synthesis, properties and future perspectives, Mittal, V. (ed.), Oxford University Press, Oxford/UK, pp. 17-46.
  • Müller, P., Kapin, E, Fekete, E. (2014). Effects of preparation methods on the structure and mechanical properties of wet conditioned starch/montmorillonite nanocomposite films. Carbohydrate Polymers, 113:569-576.
  • Paul, M.A., Alexandre, M., Degee, P., Henrist, C., Rulmont, A. and Dubois, P. (2003). New nanocomposite materials based on plasticized poly(L-lactide) and organo-modified montmorillonites: thermal and morphological study. Polymer, 44:443-50.
  • Plackett, D.V., Holm, V.K., Johansen, P., Plackett, D.V., Holm, V.K., Johansen, P., Ndoni, S., Nielsen, V., Sipilainen-Malm, T., Södergård, A., Verstichel, S. (2006). Characterization of L-polylactide and L-polylactide-polycaprolactone co-polymer films for use in cheese packaging applications. Packaging Technology and Science, 19:1-24.
  • Qhobosheane, M., Santra, S., Zhang, P., & Tan, W. H. (2001). Biochemically functionalized silica nanoparticles. Analyst, 126(8):1274–1278.
  • Qin, Y., Zhang, S., Yu, J., Yang, J., Xiong, Y., Sun, Q. (2016). Effects of chitin nano-whiskers on the antibacterial and physicochemical properties of maize starch films. Carbohydrate Polymers, 147:372-378.
  • Ramirez, O., Bonardd, S., Saldías, C., Radic, D., Leiva, A. (2017). Biobased Chitosan Nanocomposite Films Containing Gold Nanoparticles: Obtainment, Characterization, and Catalytic Activity Assessment. ACS Applied Materials and Interfaces, 9(19): 16561–16570.
  • Raquez, J.M., Nabar, Y., Narayan, R., Dubois, P. (2011). Preparation and characterization of maleated thermoplastic starch-based nanocomposites. Journal of Applied Polymer Science, 122:639–647.
  • Ray, S.S., Bousmina, M. (2005). Poly(butylene sucinate-co-adipate)/montmorillonite nanocomposites: effect of organic modifier miscibility on structure, properties, and viscoelasticity. Polymer, 46(26):12430-12439.
  • Reesha, K.V., Panda, S.K., Bindu, J., Varghese, T.O. (2015). Development and characterization of an LDPE/chitosan composite antimicrobial film for chilled fish storage. International Journal of Biological Macromolecules, 79:934-942.
  • Ren, G.L., Xu, X.H., Liu, Q., Cheng, J., Yuan, X.Y., Wu, L.L., Wan, Y. (2006). Electrospun poly(vinyl alcohol)/glucose oxidase biocomposite membranes for biosensor applications. Reactive & Functional Polymers, 66(12):1559–1564.
  • Rhim, J.W. (2011). Effect of clay contents on mechanical and water vapor barrier properties of agar-based nanocomposite films. Carbohydrate Polymers, 86:691–9.
  • Rhim, J.W., Lee, S.B., Hong, S.I. (2011). Preparation and characterization of agar/clay nanocomposite films: the effect of clay type. Journal of Food Science, 76(3):N40–48.
  • Rhim, J.W., Ng, P.K.W. (2007). Natural biopolymer-based nanocomposite films for packaging applications. Critical Reviews in Food Science and Nutrition, 47(4):411–433.
  • Romero-Bastida, C.A., Tapia-Blácido, D.R., Méndez-Montealvo, G., Bello-Pérez, L.A., Velazquez, G., Alvarez-Ramirez, J. (2016). Effect of amylose content and nanoclay incorporation order in physicochemical properties of starch/montmorillonite composites. Carbohydrate Polymers, 152:351-360.
  • Silvestre, C., Cimmino, S. (2011). Food packaging based on polymer nanomaterials. Progress in Polymer Science, 36:1766–1782.
  • Sinha Ray, S., Yamada, K., Okamoto, M., Ueda, K. (2003). Biodegradable polylactide/montmorillonite nanocomposites. Journal for Nanoscience and Nanotechnology, 3:503–510.
  • Sorrentino, A., Gorrasi, G., Vittoria, V. (2007). Potential perspectives of bionanocomposites for food packaging applications. Trends in Food Science & Technology, 18(2):84–95.
  • Sothornvit, R., Hong, S.I., An, D.J., Rhim, J.W. (2010). Effect of clay content on the physical and antimicrobial properties of whey protein isolate/organo-clay composite films. LWT: Food Science and Technology, 43:279–284.
  • Sun, J., Yendluri, R., Liu, K., Guo, Y., Lvov, Y., Yan, X. (2017). Enzyme-immobilized clay nanotube–chitosan membranes with sustainable biocatalytic activities. Physical Chemistry Chemical Physics, 19:562-567.
  • Tang, X.G., Kumar, P., Alavi, S., Sandeep, K.P. (2012). Recent advances in biopolymers and biopolymer-based nanocomposites for foodpackaging materials. Critical Reviews in Food Science and Nutrition, 52:426–442.
  • Tulsyan, G., Richter, C., Diaz, C.A. (2017). Oxygen Scavengers Based on Titanium Oxide Nanotubes for Packaging Applications. Packaging Technology and Science, 30(6):251-256.
  • Weir, A., Westerhoff, P., Fabricius, L., Hristovski, K., von Goetz N. 2012. Titanium dioxide nanoparticles in food and personal care products. Environtal Science and Technology, 46(4):2242–50.
  • Xiao-e, L., Green, A.N.M., Haque, S.A., Mills, A., Durrant, J.R. (2004). Light-driven oxygen scavenging by titania/polymer nanocomposite films. Journal of Photochemistry and Photobiology A: Chemistry, 162:253–259.
  • Youssef, A.M. Abdel-Aziz, M.S., El-Sayed, S.M. (2014). Chitosan nanocomposite films based on Ag-NP and Au-NP biosynthesis by Bacillus Subtilis as packaging materials. International Journal of Biological Macromolecules, 69:185-191.
  • Youssef, A.M. Abou-Yousef, H., El-Sayed, S.M., Kamel, S. (2015). Mechanical and antibacterial properties of novel high performance chitosan/nanocomposite films. International Journal of Biological Macromolecules, 46: 25-32.
  • Zamudio-Flores P.B., Torres A.V., Salgado-Delgado R., Bello-Pérez L.A. (2010). Influence of the oxidation and acetylation of banana starch on the mechanical and water barrier properties of modified starch and modified starch/chitosan blend films. Journal of Applied Polymer Science, 115:991–998.
Gıda-Cover
  • ISSN: 1300-3070
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1976
  • Yayıncı: Prof. Dr. İbrahim ÇAKIR
Sayıdaki Diğer Makaleler

LİYOFİLİZE BAZI MİKROALG TÜRLERİNİN SAKIZ BİLEŞİMİNDE DOĞAL RENKLENDİRİCİ OLARAK KULLANIMI

İbrahim PALABIYIK

SOMATİK HÜCRELER VE ENDOJEN ENZİMLERİNİN SÜT TEKNOLOJİSİNDEKİ ÖNEMİ

Elif ÖZER, Ayşe Sibel AKALIN, Harun KESENKAŞ, Gülfem ÜNAL

GELENEKSEL TURŞULARDAN İZOLE EDİLEN LAKTİK ASİT BAKTERİLERİNİN TEKNOLOJİK ÖZELLİKLERİ

FİLİZ ÖZÇELİK, Mehmet TOKATLI, Simel BAĞDER ELMACI, Nurdan ARSLANKOZ İŞLEYEN

KİLİS YAĞLIK VE MEMECİK ZEYTİNYAĞLARININ KİMYASAL VE DUYUSAL ÖZELLİKLERİNE ZEYTİNİN OLGUNLUK DERECESİ VE HASAT YILININ ETKİSİ

Elif Burçin BÜYÜKGÖK, Aytaç SAYGIN GÜMÜŞKESEN

SUCUK ÜRETİMİNDE KURUTULMUŞ MANTAR (AGARICUS BISPORUS) İLAVESİNİN MİKROBİYOLOJİK KALİTE VE BİYOJENİK AMİN İÇERİĞİ ÜZERİNE ETKİLERİ

Hüseyin GENÇCELEP, Ömer ZORBA

SOĞAN DİLİMLERİNİN KURUTULMASI ESNASINDA RENK DEĞİŞİMİNE ETKİ EDEN FAKTÖRLERİN YANIT YÜZEY YÖNTEMİ İLE BELİRLENMESİ

Hande Demir, Özge Süfer, Seda Sezer

ROOİBOS ÇAYI İÇECEĞİNİN FİZİKOKİMYASAL ÖZELLİKLERİ İLE FENOLİK MADDE VE ANTİOKSİDAN KAPASİTE YÖNÜNDEN BİYOALINABİLİRLİĞİNİN ARAŞTIRILMASI

Senem SUNA

LAKTİK ASİT BAKTERİLERİNİN AFLATOKSİN B1 BAĞLAYICI VE ANTİKANSEROJEN ÖZELLİKLERİ

Şebnem Kurhan, İbrahim ÇAKIR

ET EMÜLSİYONLARININ BAZI FİZİKSEL VE TEKSTÜREL ÖZELLİKLERİ ÜZERİNE FARKLI MODİFİYE NİŞASTALARIN ETKİLERİ

Hüseyin GENÇCELEP, Münir ANIL, Furkan Türker SARICAOĞLU, Berrin AĞAR

LACTOBACİLLUS SANFRANCİSCENSİS’İN GELİŞMESİNDE ETKİLİ BİYOPROSES PARAMETRELERİNİN BELİRLENMESİ VE OPTİMİZASYONU

Yekta Göksungur, Filiz Döner