Kayıcı Teknelerde Minimum Direnç için Optimum Trim Açılarının Savitsky Yöntemi ile Belirlenmesi

Bu çalışmada, kayıcı bir teknenin toplam direncinin minimizasyon problemi geniş bir Froude sayısı aralığı için incelenmiştir. Optimum boy-en oranı ve dolayısıyla teknenin dinamik trim açılarını hesaplamak için Savitsky yönteminden yararlanılmıştır. İlk olarak, Savitsky yöntemi ile tekneye ait boy-en oranları, dinamik trim açıları ve toplam dirençler hesaplanmıştır. Daha sonra, her bir tekne hızı için boy-en oranları kademeli olarak değiştirilerek minimum direnç kuvvetleri ve dolayısıyla dinamik trim açıları hesaplanmıştır. Ardından, optimum trim açılarını bulmak için gereken trim momentleri hesaplanmıştır. Bütün hesaplamalar, Python programı kullanılarak yapılmıştır. Sonuçlar, trim tab kullanımının toplam direnci takriben 20% oranına kadar düşürebileceğini göstermektedir. Minimum direnç için elde edilen trim tab açıları şekillerle ve tablolarla gösterilmiştir.

Determination of the Optimum Trim Angle of a Planing Hull for Minimum Drag Using Savitsky Method

In this paper, the minimization problem of the total resistance of a planing hull is studied for a wide range of Froude numbers. The Savitsky method is utilized to calculate optimum aspect ratios and dynamic trim angles of the hull. First, the aspect ratios, dynamic trim angles, and the total resistances of the hull are calculated with the Savitsky method. Then, the minimum drag forces are computed for each vessel speed by changing the aspect ratios systematically. Then, the required trim moments are calculated to find the optimum trim tab angles. The entire calculations are performed by using a Python program. The results showed that trim tabs can reduce the total drag up to 20% approximately. The obtained trim tab angles for minimum drag are demonstrated with figures and tables.

___

  • Amoroso C.L, Liverani A., Caligiana G. (2018). Numerical investigation on optimum trim envelope curve for high performance sailing yacht hulls. Ocean Engineering, Vol. 163, PP. 76-384.
  • Ashkezari A.Z., Moradi M. (2021). Three-dimensional simulation and evaluation of the hydrodynamic effects of stern wedges on the performance and stability of high-speed planing monohull craft. Applied Ocean Research, Vol.110, 102585.
  • Baker G. S., (1912). Some Experiments in Connection with Design of Floats for Hydro-Aeroplanes, ARC (British) R & M, no. 70.
  • Brown P., (1971). “An Experimental and Theoretical Study of Planing Surfaces with Trim Flaps”, Davison Laboratory Report 1463, Stevens Institute of Technology, Hoboken, NJ, USA.
  • Cane Du P. (1951). “High Speed Small Craft”, Temple Press, London.
  • Cakici F., Yazici H., Alkan A. D., (2018). Optimal control design for reducing vertical acceleration of a motor yacht form.
  • Clarke D., (2009). High Speed and Advanced Craft Lecture Notes by David Clarke.
  • Ertogan M., Wilson P.A., Tayyar G. T., Ertugrul S, (2017). Optimal trim control of a high-speed craft by trim tabs/interceptors Part I: Pitch and surge coupled dynamic modelling using sea trial data. Ocean Engineering, Vol. 130, PP. 300-309.
  • Ghadimi P, Loni A, Nowruzi H, Dashtimanesh A, Tavakoli S, (2014). Parametric Study of the Effects of Trim Tabs on Running Trim and Resistance of Planing Hulls, Advanced Shipping and Ocean Engineering, Vol. 3 Iss. 1, PP. 1-12.
  • Ghassemi H., Bahrami H., Vaezi A., Ghassemi M.A., (2019). Minimization of Resistance of the Planing Boat by Trim-tab, Int. J. Phys., vol. 7, no. 1, pp. 21–26.
  • Jokar H., Zeinali H. Tamaddondar M.H., (2020) Planing craft control using pneumatically driven trim tab. Mathematics and Computers in Simulation, Vol. 178, PP 439-463.
  • Sambraus A., (1938). Planing Surface Tests at Large Froude Numbers – Airfoil Comparison, NACA TM No. 848, February.
  • Savitsky D., (1964). Hydrodynamic Design of Planing Boats, Marine Technology 1.
  • Savitsky D., Brown P., (1976). Procedures for hydrodynamic evaluation of planing hulls in smooth and rough water, Marine Technology vol. 13, pp. 381-400.