FV Panel Sistem Temizliğinde Tahrik Elemanı Olarak Doğrusal FDAM ve Doğrusal ARM'nin Karşılaştırılması

Enerji kullanımının artması ile fosil yakıtların rezervlerindeki yetersizlikler ve fosil yakıtların çevreye verdiği olumsuz etkilerinden dolayı alternatif enerji kaynakları son zamanlarda daha fazla önem kazanmaya başlamıştır. Bu durum alternatif enerji kaynaklarının kullanım oranını artırmakta ve bu kaynaklardan maksimum verimde enerji sağlanması hedeflenmektedir. Fotovoltaik sistemlerdeki enerji verimliliğini etkileyen unsurlardan biri de panellerde meydana gelen kirlenmelerdir. Panel temizliği için farklı sistemler ve bu sistemlerde kullanılan çeşitli tahrik elemanları bulunmaktadır. Bu çalışma da FV panel temizliğinde kullanılabilecek Doğrusal Anahtarlamalı Relüktans Motor (doğrusal ARM) ile doğrusal Fırçasız Doğru Akım Motor (doğrusal FDAM) karşılaştırması yapılmıştır. Bu iki doğrusal motor tipi performans, maliyet, güvenilirlik ve uygulama avantajı olarak sınıflandırılarak sonuçlar detaylı verilmiştir

Comparison of Linear BLDC and Linear SRM as Drive Elements in PV Panel System Cleaning

With the increase in energy use, alternative energy sources have recently become more important due to the insufficiencies in the reserves of fossil fuels and the negative effects of fossil fuels on the environment. This situation increases the utilization rate of alternative energy sources, and it is aimed to provide energy from these sources with maximum efficiency. One of the factors affecting energy efficiency in photovoltaic systems is the pollution on the panels. There are different systems for panel cleaning and various drive elements used in these systems. In this study, linear Switched Reluctance Motor (linear SRM) and linear Brushless Direct Current Motor (linear BLDC) are compared for PV panel cleaning. These two linear motor types are categorized in terms of performance, cost, reliability, and application advantage and the results are detailed.

___

  • Aly, S.P., Gandhidasan, P., Barth, N., Ahzi, S., 2016. Novel dry cleaning machine for photovoltaic and solar panels. Proc. 2015 IEEE Int. Renew. Sustain. Energy Conf. IRSEC 2015.
  • Azrina Binti Hishamuddin, B., Darul Ridzuan, P., 2012. Modellıng Of Lınear Permanent Magnet Motor For Aır-Vapor Compressor. Tronoh.
  • Barış, A., Güleç, M., Demir, Y., Aydın, M., 2018. Doğrusal Sürekli Mıknatıslı Senkron Motorun Doğrusal Olmayan Manyetik Eşdeğer Devre ve Sonlu Elemanlar Tabanlı Tasarımı. EMO Bilim. Dergi 8, 97–102.
  • Boldea, I., 2013. Linear Electric Machines, Drives, and MAGLEVs Handbook. CRC Press 1–646.
  • Çıra, F., 2019. Detection of winding insulation fault by using moment data of Permanent Magnet Synchronous Motor with extreme learning machine method. EMO Bilim. Dergi 9, 7–15.
  • Costa, S.C.S., Diniz, A.S.A.C., Kazmerski, L.L., 2016. Dust and soiling issues and impacts relating to solar energy systems: Literature review update for 2012–2015. Renew. Sustain. Energy Rev. 63, 33–61.
  • Deb, D., Brahmbhatt, N.L., 2018. Review of yield increase of solar panels through soiling prevention, and a proposed water-free automated cleaning solution. Renew. Sustain. Energy Rev. 82, 3306–3313.
  • Dursun, Mahir; Özbay, H., 2011. Design and analysis of a double sided linear switched reluctance motor driver for elevator door. Prz. Elektrotechniczny 87, 293–296.
  • Eguren, I., Almandoz, G., Egea, A., Ugalde, G., Escalada, A.J., 2020. Linear Machines for Long Stroke Applications - A Review. IEEE Access 8, 3960–3979.
  • Eker, M., 2022. Adaptive drive element for PV panel cleaning system: linear BLDC motor. Electr. Eng.
  • El-Shobokshy, M.S., Hussein, F.M., 1993. Degradation of photovoltaic cell performance due to dust deposition on to its surface. Renew. Energy 3, 585–590.
  • Fouad, M.M., Shihata, L.A., Morgan, E.S.I., 2017. An integrated review of factors influencing the perfomance of photovoltaic panels. Renew. Sustain. Energy Rev. 80, 1499–1511.
  • Garcia-Amoros, J., Andrada, P., Blanque, B., Garcia-Amoros, J., Andrada, P., Blanque, B., 2020. Linear Switched Reluctance Motors. Model. Control Switch. Reluctance Mach.
  • King, D.L., Boyson, W.E., Kratochvil, J.A., 2002. Analysis of factors influencing the annual energy production of photovoltaic systems. Conf. Rec. IEEE Photovolt. Spec. Conf. 1356–1361.
  • Lu, J., Zhang, X., Tan, S., Guan, X., Ma, W., Song, S., 2015. Research on a linear permanent magnet brushless DC motor for electromagnetic catapult. IEEE Trans. Plasma Sci. 43, 2088–2094.
  • Lu, X., Zhang, Q., Hu, J., 2013. A linear piezoelectric actuator based solar panel cleaning system. Energy 60, 401–406.
  • Maghami, M.R., Hizam, H., Gomes, C., Radzi, M.A., Rezadad, M.I., Hajighorbani, S., 2016. Power loss due to soiling on solar panel: A review. Renew. Sustain. Energy Rev. 59, 1307–1316.
  • Mani, M., Pillai, R., 2010. Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations. Renew. Sustain. Energy Rev. 14, 3124–3131.
  • Ronnaronglit, N., Maneerat, N., 2019. A cleaning robot for solar panels. In: Proceeding - 5th International Conference on Engineering, Applied Sciences and Technology, ICEAST 2019. Institute of Electrical and Electronics Engineers Inc.
  • Wach, P., 2011. Switched Reluctance Motor Drives. Dyn. Control Electr. Drives 381–448.
  • Zaihidee, F.M., Mekhilef, S., Seyedmahmoudian, M., Horan, B., 2016. Dust as an unalterable deteriorative factor affecting PV panel’s efficiency: Why and how. Renew. Sustain. Energy Rev.
  • Zhao, S.W., Cheung, N.C., Gan, W.C., Yang, J.M., Pan, J.F., 2007. A self-tuning regulator for the high-precision position control of a linear switched reluctance motor. IEEE Trans. Ind. Electron. 54, 2425–2434.