Structural Variations in SBA-15 by Copper Incorporation and a Test in Catalytic Wet Peroxide Oxidation of Phenol
Structural Variations in SBA-15 by Copper Incorporation and a Test in Catalytic Wet Peroxide Oxidation of Phenol
This study presents the phenol removal in the wastewater via catalytic wet peroxide oxidationover Cu-SBA-15 catalyst. The hydrothermally synthesized copper catalyst was characterizedusing XRD, N2 adsorption-desorption isotherms and FTIR analysis techniques. The multiple BETsurface area, total pore volume and mesopore diameter values were determined as 996 m2/g, 1.55cm3/g and 6.82 nm, respectively. XRD pattern showed that the copper loading did not demolishthe characteristic structure of SBA-15. FTIR spectrum of SBA-15 and catalyst without and withpyridine sorption showed the enhancement both in Lewis and Brønsted acidities by copperincorporation to the structure. The wet hydrogen peroxide catalytic oxidation of phenol performedin a batch reactor at 25, 40 and 60 oC temperatures provided 56% phenol conversion at 60 oC.
___
- Catrinescu, C., Teodosiu, C., Macoveanu, M., Miche-Brendle, J., Dred, R., “Catalytic wet peroxide
oxidation of phenol over Fe- exchanged pillared beidellite”, Water Res., 37: 1154–1160, (2003).
- Taran, O.P., Zagoruiko, A.N., Yashnik, S. A., Ayusheev, A. B., Andrey V., Prosvirin, I.P.,
Prihod’kof, R.V., Goncharukf, V.V., Parmon, V.N., “Wet peroxide oxidation of phenol over
carbon/zeolite catalysts. Kinetics and diffusion study in batch and flow reactors”, J. Environ. Chem.
Eng., 6: 2551–2560, (2018).
- Damjanovic, L., Rakic, V., Rac, V., Stosic, D., Auruox, A., “The investigation of phenol removal
from aqueous solutions by zeolites as solid adsorbents”, J.Hazard. Mat., 184: 477– 484, (2010).
- Garrido-Ramirez, E. G., Theng, B. K. G. Mora, M. L., “Clays and oxide minerals as catalysts and
nanocatalysts in Fenton-like reactions—a review”, App. Clay Sci., 47 (3–4): 182–192, (2010).
- Moyo, M., Mutare, E., Chigondo F., Nyamunda, B.C., “Removal of phenol from aqueous by
adsorption on yeast, Saccharomyces Cerevisiae”, IJRRAS, 11: 3, (2012).
- Zhong, M., Wang, Y., Yu, J., Tian, Y., Xu, G., “Porous carbon from vinegar lees for phenol
adsorption”, Particuology, 10: 35– 41, (2012).
- Alejandre A., Medina F., Salagre P., Fabregat A., Sueiras J.E. “Characterization and activity of
copper and nickel catalysts for the oxidation of phenol aqueous solutions.” Applied Catalysis B:
Environmental, 18: 307–315, (1998).
- Rokhina E.V. Virkutyte J. “Environmental application of catalytic processes: Heterogeneous liquid
phase oxidation of phenol with hydrogen peroxide.” Critical Reviews in Environmental Science and
Technology, 41: 125-167, (2011).
- Kim, K.H., Ihm, S.K., “Heterogeneous catalytic wet air oxidation of refractory organic pollutants in
industrial wastewaters: A review”, Journal of Hazardous Materials, 186: 16–34, (2011).
- Kulkarni S.J, Kaware J.P., “Review on research for removal of phenol from wastewater”, Int. J, Sci.
Res. Publ., 3: 1–4, (2013).
- Divate, S.B., Hinge, R.V., “Review on research removal of phenol from wastewater by using
different methods”, International Journal of Scientific and Research Publications, 5: 1-3, (2014).
- Cordova Villegas, L.G., Mashhadi, N., Chen, M., Mukherjee, D., Taylor, K.E., Biswas, N.A., “Short
Review of Techniques for Phenol Removal from Wastewater”, Curr Pollution Rep., 2: 157–167,
(2016).
- Emgili, H., Yabalak, Erdal., Görmez, Ö., Gizir, A.M., “Degradation of Maxilon Blue GRL Dye ısing
subcritical water and ultrasonic assisted oxidation methods”, G.U. J. Sci., 30(4): 140-150, (2017).
- Liou, R.M., Chen, S.H., “CuO impregnated activated carbon for catalytic wet peroxide oxidation of
phenol”, J. Hazard. Mater., 172: 498–506, (2009).
- Villota, N., Mijangos, F., Varona, F., Andr´es, J., “Kinetic modelling of toxic compounds generated
during phenol elimination in wastewaters”, Int. J. Chem. React. Eng., 5: A63 (2007).
- Hosseini, S.A., Davodian, M., Abbasian, A.R., “Remediation of phenol and phenolic derivatives by
catalytic wet peroxide oxidation over Co-Ni layered double nano hydroxides”, J. Taiwan Inst. Chem.
Eng., 75: 97–104, (2017).
- Singh, L., Rekha, P., Chand, S., “Comparative evaluation of synthesis routes of Cu/zeolite Y catalysts
for catalytic wet peroxide oxidation of quinoline in fixed-bed reactor”, Journal of Environmental
Management, 215: 1– 12, (2018).
- Zhong, Xin, Barbier Jr., J., Duprez, Daniel, Zhang, H., Royer, S., “Modulating the copper oxide
morphology and accessibility by using micro-/mesoporous SBA-15 structures as host support: Effect
on the activity for the CWPO of phenol reaction”, App. Catal. B: Environ., 121– 122: 123– 134,
(2012).
- Jiang, S., Zhang, H., Yan, Y., “Cu-MFI zeolite supported on paper-like sintered stainless fiber for
catalytic wet peroxide oxidation of phenol in a batch reactor”, Separation and Purification Tech.,
190: 243–251, (2018).
- Songshan, J., Huiping, Z., Ying, Y., “Cu-MFI zeolite supported on paper-like sintered stainless fiber
for catalytic wet peroxide oxidation of phenol in a batch reactor”, Separation and Purification Tech.,
190: 243–251, (2018).
- Valkaj, K.M., Wittine, O., Margeta, K., Granato, T., Katoviæ, A., Zrnèeviæ, S., “Phenol oxidation
with hydrogen peroxide using Cu/ZSM5 and Cu/Y5 catalysts”, Polish J. Chem. Tech., 13 (3): 28–
36, (2011).
- Domínguez, C.M., Quintanilla, A., Casas, J.A., Rodriguez, J.J., “Kinetics of wet peroxide oxidation
of phenol with a gold/activated carbon catalyst”, Chem.Eng.J., 253: 486–492, (2014).
- Busca, G., Berardinelli, S., Resini, C., Arrighi, L., “Technologies for the removal of phenol from
fluid streams: A short review of recent developments”, J.Hazard. Mat., 160: 265–288, (2008).
- Zhao, D., Huo, Q., Feng, J., Chmelka, B.F., Stucky, G.D., “Nonionic triblock and star diblock
copolymer and oligomeric surfactant syntheses of highly ordered, hydrotermally stable, mesoporous
silica structure”, J. Am.Chem.Soc., 120: 6024–6036, (1998).
- Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G.H., Chmelka, B.F., Stucky, G.D., “Triblock
Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores”, Science,
279:548-552 (1998).
- Sanabria, N. R., Molina R., Moreno, S., “Development of pillared clays for wet hydrogen peroxide
oxidation of phenol and its application in the post treatment of coffee wastewater”, International
Journal of Photoenergy, Volume 2012, Article ID 864104, 17 pages.
- Augustine, R.L., “Heterogeneous catalysis for the synthetic chemist”, Marcel Dekker, New York,
(1996).
- Carlo P., Pierluigi V., “Catalyst preparation methods”, Catalysis Today, 34:281-305, (1997).
- Barrault, J., Bouchoule, C., Echachoui, K., Frini-Srasra, N., Trabelsi, M., Bergaya, F., “Catalytic wet
peroxide oxidation (CWPO) of mixed (Al-Cu)-pillared clays”, Appl. Catal B: Environ., 15: 269-274,
(1998).
- Valkaj, K. M., Katovic, A., Zrnčević, S., “Investigation of the catalytic wet peroxide oxidation of
phenol over different types of Cu/ZSM-5 catalyst”, J. Hazard. Mater. 144 (3): 663–667, (2007).
- Tomul, F., “The effect of ultrasonic treatment on iron–chromium pillared bentonite synthesis and
catalytic wet peroxide oxidation of phenol”, Applied Clay Science, 120: 121–134 (2016).
- Melero, J.A., Calleja, G., Martı´nez, F., Molina, R., “Nanocomposite of crystalline Fe2O3 and CuO
particles and mesostructured SBA-15 silica as an active catalyst for wet peroxide oxidation
processes”, Catal. Commun., 7: 478–483, (2006).
- Garrido-Ramirez, E.G., Sivaiah, M.V., Barrault, Joël, Valange, Sabine, Theng, B.K.G., UretaZañartu,
M. S., Mora, M. L., “Catalytic wet peroxide oxidation of phenol over iron or copper oxidesupported
allophane clay materials: Influence of catalyst SiO2/Al2O3 ratio”, Microporous and
Mesoporous Mat. 162: 189–198, (2012).
- Wang, L., Kong A., Chen, B., Ding, H., Shan,Y., He. M., “Direct synthesis, characterization of CuSBA-15
and its high catalytic activity in hydroxylation of phenol by H2O2. J. Mol. Catal. A: Chem.,
230: 143–150, (2005).
- Lowell S, Shields JE, Thomas MA, Thommes M.M., “Characterization of porous solids and powders:
surface area and pore size and density”, Kluwer Academic Publishers, NewYork, (2006).
- Ungureanu, A., Dragoi B., Hulea, V., Cacciaguerra, T., Meloni, D., Solinas, V., Dumitriu, E., “Effect
of aluminium incorporation by the ‘‘pH-adjusting’’ method on the structural, acidic and catalytic
properties of mesoporous SBA-15”, Microporous and Mesoporous Mat., 163: 51–64, (2012).
- Chirieac, A., Dragoi, B., Ungureanu, A., Ciotonea, C., Mazilu, I., Royer, S., Mamede, A.S., Rombi,
E. , Ferino, I., Dumitriu, E., “Facile synthesis of highly dispersed and thermally stable copper-based
nanoparticles supported on SBA-15 occluded with P123 surfactant for catalytic applications”, J.
Catal., 339: 270–283, (2016).
- Øye, G., Sjöblom, J.,Stöcker, M., “Synthesis, characterization and potential applications of new
materials in the mesoporous range”, Adv.Colloid and Interface Sci., 89-90: 439-466, (2001).
- Kang, F., Wang, Q., Xiang, S., “Synthesis of mesoporous Al-MCM-41 materials using metakaolin
as aluminium source”, Material. Letters, 59: 1426-1429, (2005).
- Tapaswi, P.K., Moorthy, M.S., Park S.S., Ha, C.S., “Fast, selective adsorption of Cu2+ from aqueous
mixed metal ions solution using 1,4,7-triazacylononane modified SBA-15 silica adsorbent (SBATACN)”,
J. Solid State Chem., 211: 191–199, (2014).
- Luo, G., Yan, S., Qiao, M., Fan, K., “Rub/Sn-SBA-15 catalysts: preparation, characterization, and
catalytic performance in ethyl lactate hydrogenation”, Applied Catalysis A: General, 332: 79–88,
(2007).
- Shah, P., Ramaswamy, A.V., Lazar, K., Ramaswamy, V., “Direct hydrothermal synthesis of
mesoporous sn-sba-15 materials under weak acidic conditions”, Microporous and Mesoporous Mat.,
100: 210–226, (2007).
- Ojeda, M., Campero A., Guadalupe L.J., Ortega-Alfaro, M.C., Celso, V., Alvarez, C., “Incorporation
of a tungsten Fischer-type metal carbene covalently bound to functionalized SBA-15”, Microporous
and Mesoporous Mat., 111: 178–187, (2008).
- El-Hendawy, A.A., “Influence of HNO3 oxidation on the structure and adsorptive properties of
corncob-based activated carbon”, Carbon, 41: 713–722, (2003).
- Celis, J., Amadeo, N.E., Cukierman, A.L., “In situ modification of activated carbons developed from
a native invasive wood on removal of trace toxic metals from wastewater”, J. Hazard. Mater., 161:
217–223, (2009).
- Basşoğlu F.T., Balcı S., “Surface Properties of metal-incorporated Al-pillared interlayered clay
catalysts analyzed by chemisorption and infrared analysis”, G.U. J. Sci., 22(3): 215-225, (2009).
- Noreňa-Franco, L., Hernandez-Perez, I., Aguilear-Pliego, J., Maubert-Franco, A., “Selective
hydroxylation of phenol employing Cu-MCM-41 catalysts”, Catal. Today, 75: 189-195, (2002).
- Parry, E.P., “An infrared study of pyridine adsorbed on acidic solids. Characterization of surface
acidity”, J. Catalysis, 2: 371-379, (1963).
- Auer, H., Hofmann, H., “Pillared clays characterization of acidity and catalytic properties and
comparison with some zeolites”, Appl. Catal. A-Gen., 97 (1); 23–38, (1993).
- Barzetti T, Selli E, Moscotti D, Forni L., “Pyridine and ammonia as probes for FTIR analysis of solid
acid catalysts” J. Chem. Soc., Faraday T., 92(8): 1401-1407, (1996).
- Chakraborty, B., Viswanathan B., “Surface acidity of MCM-41 by in situ IR studies of pyridine
adsorption”, Catal. Today, 49: 253-260, (1999).
- Zaki, M. I., Hasan, M.A., Al-Sagheer, F.A., Pasupulety, Lata., “In situ FTIR spectra of pyridine
adsorbed on SiO2-Al2O3, TiO2, ZrO2 and CeO2: general considerations for the identification of acid
sites on surfaces of finely divided metal oxides”, Colloids Surf. A Physicochem. Eng. Asp., 190:
261–274, (2001).
- Gokce Y., Aktas Z., “Nitric acid modification of activated carbon produced from waste tea and
adsorption of methylene blue and phenol”, App. Sur. Sci., 313: 352–359, (2014)