Structural Variations in SBA-15 by Copper Incorporation and a Test in Catalytic Wet Peroxide Oxidation of Phenol

This study presents the phenol removal in the wastewater via catalytic wet peroxide oxidation over Cu-SBA-15 catalyst. The hydrothermally synthesized copper catalyst was characterized using XRD, N2 adsorption-desorption isotherms and FTIR analysis techniques. The multiple BET surface area, total pore volume and mesopore diameter values were determined as 996 m2/g, 1.55 cm3/g and 6.82 nm, respectively. XRD pattern showed that the copper loading did not demolish the characteristic structure of SBA-15. FTIR spectrum of SBA-15 and catalyst without and with pyridine sorption showed the enhancement both in Lewis and Brønsted acidities by copper incorporation to the structure. The wet hydrogen peroxide catalytic oxidation of phenol performed in a batch reactor at 25, 40 and 60oC temperatures provided 56% phenol conversion at 60oC.

___

  • [1] Catrinescu, C., Teodosiu, C., Macoveanu, M., Miche-Brendle, J., Dred, R., “Catalytic wet peroxide oxidation of phenol over Fe- exchanged pillared beidellite”, Water Res., 37: 1154–1160, (2003).
  • [2] Taran, O.P., Zagoruiko, A.N., Yashnik, S. A., Ayusheev, A. B., Andrey V., Prosvirin, I.P., Prihod’kof, R.V., Goncharukf, V.V., Parmon, V.N., “Wet peroxide oxidation of phenol over carbon/zeolite catalysts. Kinetics and diffusion study in batch and flow reactors”, J. Environ. Chem. Eng., 6: 2551–2560, (2018).
  • [3] Damjanovic, L., Rakic, V., Rac, V., Stosic, D., Auruox, A., “The investigation of phenol removal from aqueous solutions by zeolites as solid adsorbents”, J.Hazard. Mat., 184: 477– 484, (2010).
  • [4] Garrido-Ramirez, E. G., Theng, B. K. G. Mora, M. L., “Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions—a review”, App. Clay Sci., 47 (3–4): 182–192, (2010).
  • [5] Moyo, M., Mutare, E., Chigondo F., Nyamunda, B.C., “Removal of phenol from aqueous by adsorption on yeast, Saccharomyces Cerevisiae”, IJRRAS, 11: 3, (2012).
  • [6] Zhong, M., Wang, Y., Yu, J., Tian, Y., Xu, G., “Porous carbon from vinegar lees for phenol adsorption”, Particuology, 10: 35– 41, (2012).
  • [7] Alejandre A., Medina F., Salagre P., Fabregat A., Sueiras J.E. “Characterization and activity of copper and nickel catalysts for the oxidation of phenol aqueous solutions.” Applied Catalysis B: Environmental, 18: 307–315, (1998).
  • [8] Rokhina E.V. Virkutyte J. “Environmental application of catalytic processes: Heterogeneous liquid phase oxidation of phenol with hydrogen peroxide.” Critical Reviews in Environmental Science and Technology, 41: 125-167, (2011).
  • [9] Kim, K.H., Ihm, S.K., “Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: A review”, Journal of Hazardous Materials, 186: 16–34, (2011).
  • [10] Kulkarni S.J, Kaware J.P., “Review on research for removal of phenol from wastewater”, Int. J, Sci. Res. Publ., 3: 1–4, (2013).
  • [11] Divate, S.B., Hinge, R.V., “Review on research removal of phenol from wastewater by using different methods”, International Journal of Scientific and Research Publications, 5: 1-3, (2014).
  • [12] Cordova Villegas, L.G., Mashhadi, N., Chen, M., Mukherjee, D., Taylor, K.E., Biswas, N.A., “Short Review of Techniques for Phenol Removal from Wastewater”, Curr Pollution Rep., 2: 157–167, (2016).
  • [13] Emgili, H., Yabalak, Erdal., Görmez, Ö., Gizir, A.M., “Degradation of Maxilon Blue GRL Dye ısing subcritical water and ultrasonic assisted oxidation methods”, G.U. J. Sci., 30(4): 140-150, (2017).
  • [14] Liou, R.M., Chen, S.H., “CuO impregnated activated carbon for catalytic wet peroxide oxidation of phenol”, J. Hazard. Mater., 172: 498–506, (2009).
  • [15] Villota, N., Mijangos, F., Varona, F., Andr´es, J., “Kinetic modelling of toxic compounds generated during phenol elimination in wastewaters”, Int. J. Chem. React. Eng., 5: A63 (2007).
  • [16] Hosseini, S.A., Davodian, M., Abbasian, A.R., “Remediation of phenol and phenolic derivatives by catalytic wet peroxide oxidation over Co-Ni layered double nano hydroxides”, J. Taiwan Inst. Chem. Eng., 75: 97–104, (2017).
  • [17] Singh, L., Rekha, P., Chand, S., “Comparative evaluation of synthesis routes of Cu/zeolite Y catalysts for catalytic wet peroxide oxidation of quinoline in fixed-bed reactor”, Journal of Environmental Management, 215: 1– 12, (2018).
  • [18] Zhong, Xin, Barbier Jr., J., Duprez, Daniel, Zhang, H., Royer, S., “Modulating the copper oxide morphology and accessibility by using micro-/mesoporous SBA-15 structures as host support: Effect on the activity for the CWPO of phenol reaction”, App. Catal. B: Environ., 121– 122: 123– 134, (2012).
  • [19] Jiang, S., Zhang, H., Yan, Y., “Cu-MFI zeolite supported on paper-like sintered stainless fiber for catalytic wet peroxide oxidation of phenol in a batch reactor”, Separation and Purification Tech., 190: 243–251, (2018).
  • [20] Songshan, J., Huiping, Z., Ying, Y., “Cu-MFI zeolite supported on paper-like sintered stainless fiber for catalytic wet peroxide oxidation of phenol in a batch reactor”, Separation and Purification Tech., 190: 243–251, (2018).
  • [21] Valkaj, K.M., Wittine, O., Margeta, K., Granato, T., Katoviæ, A., Zrnèeviæ, S., “Phenol oxidation with hydrogen peroxide using Cu/ZSM5 and Cu/Y5 catalysts”, Polish J. Chem. Tech., 13 (3): 28–36, (2011).
  • [22] Domínguez, C.M., Quintanilla, A., Casas, J.A., Rodriguez, J.J., “Kinetics of wet peroxide oxidation of phenol with a gold/activated carbon catalyst”, Chem.Eng.J., 253: 486–492, (2014).
  • [23] Busca, G., Berardinelli, S., Resini, C., Arrighi, L., “Technologies for the removal of phenol from fluid streams: A short review of recent developments”, J.Hazard. Mat., 160: 265–288, (2008).
  • [24] Zhao, D., Huo, Q., Feng, J., Chmelka, B.F., Stucky, G.D., “Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrotermally stable, mesoporous silica structure”, J. Am.Chem.Soc., 120: 6024–6036, (1998).
  • [25] Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G.H., Chmelka, B.F., Stucky, G.D., “Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores”, Science, 279:548-552 (1998).
  • [26] Sanabria, N. R., Molina R., Moreno, S., “Development of pillared clays for wet hydrogen peroxide oxidation of phenol and its application in the post treatment of coffee wastewater”, International Journal of Photoenergy, Volume 2012, Article ID 864104, 17 pages.
  • [27] Barrault, J., Bouchoule, C., Echachoui, K., Frini-Srasra, N., Trabelsi, M., Bergaya, F., “Catalytic wet peroxide oxidation (CWPO) of mixed (Al-Cu)-pillared clays”, Appl. Catal B: Environ., 15: 269-274, (1998).
  • [28] Valkaj, K. M., Katovic, A., Zrnčević, S., “Investigation of the catalytic wet peroxide oxidation of phenol over different types of Cu/ZSM-5 catalyst”, J. Hazard. Mater. 144 (3): 663–667, (2007).
  • [29] Tomul, F., “The effect of ultrasonic treatment on iron–chromium pillared bentonite synthesis and catalytic wet peroxide oxidation of phenol”, Applied Clay Science, 120: 121–134 (2016).
  • [30] Melero, J.A., Calleja, G., Martı´nez, F., Molina, R., “Nanocomposite of crystalline Fe2O3 and CuO particles and mesostructured SBA-15 silica as an active catalyst for wet peroxide oxidation processes”, Catal. Commun., 7: 478–483, (2006).
  • [31] Garrido-Ramirez, E.G., Sivaiah, M.V., Barrault, Joël, Valange, Sabine, Theng, B.K.G., Ureta-Zañartu, M. S., Mora, M. L., “Catalytic wet peroxide oxidation of phenol over iron or copper oxide-supported allophane clay materials: Influence of catalyst SiO2/Al2O3 ratio”, Microporous and Mesoporous Mat. 162: 189–198, (2012).
  • [32] Wang, L., Kong A., Chen, B., Ding, H., Shan,Y., He. M., “Direct synthesis, characterization of Cu-SBA-15 and its high catalytic activity in hydroxylation of phenol by H2O2. J. Mol. Catal. A: Chem., 230: 143–150, (2005).
  • [33] Augustine, R.L., “Heterogeneous catalysis for the synthetic chemist”, Marcel Dekker, New York, (1996).
  • [34] Carlo P., Pierluigi V., “Catalyst preparation methods”, Catalysis Today, 34:281-305, (1997).
  • [35] Lowell S, Shields JE, Thomas MA, Thommes M.M., “Characterization of porous solids and powders: surface area and pore size and density”, Kluwer Academic Publishers, NewYork, (2006).
  • [36] Ungureanu, A., Dragoi B., Hulea, V., Cacciaguerra, T., Meloni, D., Solinas, V., Dumitriu, E., “Effect of aluminium incorporation by the ‘‘pH-adjusting’’ method on the structural, acidic and catalytic properties of mesoporous SBA-15”, Microporous and Mesoporous Mat., 163: 51–64, (2012).
  • [37] Chirieac, A., Dragoi, B., Ungureanu, A., Ciotonea, C., Mazilu, I., Royer, S., Mamede, A.S., Rombi, E. , Ferino, I., Dumitriu, E., “Facile synthesis of highly dispersed and thermally stable copper-based nanoparticles supported on SBA-15 occluded with P123 surfactant for catalytic applications”, J. Catal., 339: 270–283, (2016).
  • [38] Øye, G., Sjöblom, J.,Stöcker, M., “Synthesis, characterization and potential applications of new materials in the mesoporous range”, Adv.Colloid and Interface Sci., 89-90: 439-466, (2001).
  • [39] Kang, F., Wang, Q., Xiang, S., “Synthesis of mesoporous Al-MCM-41 materials using metakaolin as aluminium source”, Material. Letters, 59: 1426-1429, (2005).
  • [40] Tapaswi, P.K., Moorthy, M.S., Park S.S., Ha, C.S., “Fast, selective adsorption of Cu2+ from aqueous mixed metal ions solution using 1,4,7-triazacylononane modified SBA-15 silica adsorbent (SBA-TACN)”, J. Solid State Chem., 211: 191–199, (2014).
  • [41] Luo, G., Yan, S., Qiao, M., Fan, K., “Rub/Sn-SBA-15 catalysts: preparation, characterization, and catalytic performance in ethyl lactate hydrogenation”, Applied Catalysis A: General, 332: 79–88, (2007).
  • [42] Shah, P., Ramaswamy, A.V., Lazar, K., Ramaswamy, V., “Direct hydrothermal synthesis of mesoporous sn-sba-15 materials under weak acidic conditions”, Microporous and Mesoporous Mat., 100: 210–226, (2007).
  • [43] Ojeda, M., Campero A., Guadalupe L.J., Ortega-Alfaro, M.C., Celso, V., Alvarez, C., “Incorporation of a tungsten Fischer-type metal carbene covalently bound to functionalized SBA-15”, Microporous and Mesoporous Mat., 111: 178–187, (2008).
  • [44] El-Hendawy, A.A., “Influence of HNO3 oxidation on the structure and adsorptive properties of corncob-based activated carbon”, Carbon, 41: 713–722, (2003).
  • [45] Celis, J., Amadeo, N.E., Cukierman, A.L., “In situ modification of activated carbons developed from a native invasive wood on removal of trace toxic metals from wastewater”, J. Hazard. Mater., 161: 217–223, (2009).
  • [46] Basşoğlu F.T., Balcı S., “Surface Properties of metal-incorporated Al-pillared interlayered clay catalysts analyzed by chemisorption and infrared analysis”, G.U. J. Sci., 22(3): 215-225, (2009).
  • [47] Noreňa-Franco, L., Hernandez-Perez, I., Aguilear-Pliego, J., Maubert-Franco, A., “Selective hydroxylation of phenol employing Cu-MCM-41 catalysts”, Catal. Today, 75: 189-195, (2002).
  • [48] Parry, E.P., “An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity”, J. Catalysis, 2: 371-379, (1963).
  • [49] Auer, H., Hofmann, H., “Pillared clays characterization of acidity and catalytic properties and comparison with some zeolites”, Appl. Catal. A-Gen., 97 (1); 23–38, (1993).
  • [50] Barzetti T, Selli E, Moscotti D, Forni L., “Pyridine and ammonia as probes for FTIR analysis of solid acid catalysts” J. Chem. Soc., Faraday T., 92(8): 1401-1407, (1996).
  • [51] Chakraborty, B., Viswanathan B., “Surface acidity of MCM-41 by in situ IR studies of pyridine adsorption”, Catal. Today, 49: 253-260, (1999).
  • [52] Zaki, M. I., Hasan, M.A., Al-Sagheer, F.A., Pasupulety, Lata., “In situ FTIR spectra of pyridine adsorbed on SiO2-Al2O3, TiO2, ZrO2 and CeO2: general considerations for the identification of acid sites on surfaces of finely divided metal oxides”, Colloids Surf. A Physicochem. Eng. Asp., 190: 261–274, (2001).
  • [53] Gokce Y., Aktas Z., “Nitric acid modification of activated carbon produced from waste tea and adsorption of methylene blue and phenol”, App. Sur. Sci., 313: 352–359, (2014).