Some Notes on the New Sequence Space $b_p^{r,s}$

Some Notes on the New Sequence Space $b_p^{r,s}$

In this paper, we describe the sequence space $b_p^{r,s}$(D) originated by the composition of theBinomial matrix and generalized second order difference (triple band) matrix and indicate thatthe space $b_p^{r,s}$(D) is linearly isomorphic to the space ??, where 1 ≤ ? < ∞. Moreover, we obtainsome inclusion relations and Schauder basis of the space $b_p^{r,s}$(D). We also pinpoint ?-, ?- and?-duals of the space $b_p^{r,s}$(D)). Finally, we classify some matrix classes related to the space$b_p^{r,s}$(D).

___

  • [1] Choudhary, B., Nanda, S., Functional Analysis with Applications, Wiley, New Delhi, (1989).
  • [2] Wilansky, A., Summability Through Functional Analysis, North-Holland Mathematics Studies, 85, Elsevier, Amsterdam, (1984).
  • [3] Wang, C.S., “On Norlund sequence spaces”, Tamkang Journal of Mathematics, 9: 269-274, (1978).
  • [4] Ng, P.N., Lee, P.Y., “Cesaro sequence spaces of non-absolute type”, Commentationes Mathematicae (Prace Matematyczne.), 20(2): 429-433, (1978).
  • [5] Kızmaz, H., “On certain sequence spaces”, Canadian Mathematical Bulletin, 24(2): 169-176, (1981).
  • [6] Et, M.,“On some difference sequence spaces”, Turkish Journal of Mathematics, 17: 18-24, (1993).[7] Altay, B., Başar, F., “Some Euler sequence spaces of non-absolute type”, Ukrainian Mathematical Journal, 57(1): 1-17, (2005).
  • [8] Altay, B., Başar, F. and Mursaleen, M.., “On the Euler sequence spaces which include the spaces ?? and ?∞ I ”, Information Science, 176(10): 1450-1462, (2006).
  • [9] Mursaleen, M.., Başar, F. and Altay, B., “On the Euler sequence spaces which include the spaces ?? and ?∞ II ”, Nonlinear Analysis: Theory, Methods and Application, 65(3): 707-717, (2006).
  • [10] Altay, B., Polat, H., “On some new Euler difference sequence spaces”, Southeast Asian Bulletin Mathematics, 30(2): 209-220, (2006).
  • [11] Polat, H., Başar, F., “Some Euler spaces of difference sequences of order m”, Acta Mathematica Scienta Series B, Engl. Ed., 27B(2): 254-266, (2007).
  • [12] Kara, E.E., Başarır, M., “On compact operators and some Euler ? (?) -difference sequence spaces”, Journal of Mathematical Analysis and Applications, 379(2): 499-511, (2011).
  • [13] Kirişçi, M., Başar, F., “Some new sequence spaces derived by the domain of generalized difference matrix”, Computers & Mathematics with Applications, 60(5): 1299-1309, (2010).
  • [14] Bişgin, M.C., “The Binomial sequence spaces of nonabsolute type”, Journal of Inequalities and Applications, 2016:309,(2016).
  • [15] Bişgin, M.C., “The Binomial sequence spaces which include the spaces ?? and ?∞ and geometric properties”, Journal of Inequalities and Applications, 2016:304, (2016).
  • [16] Bişgin, M.C., “A note on the sequence space ?? ?,? (?)”, Cumhuriyet Science Journal, 38(4): 11-25 (2017).
  • [17] Jarrah, AM., Malkowsky, E., “BK-spaces, bases and linear operators”, Rendiconti del Circolo Matematico di Palermo Series, 52(2): 177-191, (1998).
  • [18] Stieglitz, M., Tietz, H., “Matrix Transformationen von Folgenräumen eine ergebnisübersicht”, Mathematische Zeitschrift 154: 1-16, (1977).