Local $T_3$ Constant Filter Convergence Spaces
Local $T_3$ Constant Filter Convergence Spaces
In this paper, we characterize each of local $T_3$(resp. ?3′, ??̅3, ??3′) constant filter convergencespaces and investigate the relationships among these various forms. We show that the fullsubcategories ?̅3?????? and ??̅3?????? (resp. ?3′?????? and ??3′??????) of ?????? areisomorphic categories. Moreover, we show that if a constant filter convergence space (B,K) is ?̅3(resp. ?3′, ??̅3 or ??3′) at p and M⊂B with p∈M, then M is ?̅3 (resp. ?3′) at p
___
- [1] Cartan, H., “Theorie des filtres”, C. R. de l'Academie des Sciences, 205:595-598, (1937).
- [2] Cartan, H., “Filtres et ultrafiltres”, C. R. de l'Academie des Sciences, 205:777-779, (1937).
- [3] Schwarz, F.,“Connections between convergence and nearness”, The Series Lecture Notes in Mathematics, 719:345-354, (1978).
- [4] Baran, M., “Separation properties”, Indian J. Pure Applied Mathematics, 23:333-341, (1991).
- [5] Baran, M., “The notion of closedness in topological categories”, Commentationes Mathematicae Universitatis Carolinae, 34:383-395, (1993).
- [6] Adamek, J., Herrlich, H., and Strecker, G. E., Abstract and concrete categories, John Wiley and Sons, New York, (1990).
- [7] Nel, L. D., “Initially structured categories and cartesian closedness”, Canadian Journal of Mathematics, 27:1361-1377, (1975).
- [8] Baran, M., “Separation properties in topological categories”, Mathematica Balkanica, 10:39-48, (1996).
- [9] Baran, M., “Stacks and filters”, Turkish Journal of Mathematics, 16:95-108, (1992).
- [10] Baran, M., “T3 and T4 objects in topological categories”, Indian Journal Pure Applied Mathematics, 29:59-69, (1998).
- [11] Erciyes, A., & Baran, M., “Local pre-Hausdorff constant filter convergence spaces”, Turkish Journal of Mathematics and Computer Science, 10:82-87, (2018).
- [12] Baran, T. M., “Local T2 extended pseudo-quasi-semi metric spaces”, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(2):2117-2127, (2019).
- [13] Kula, M., “Separation properties at p for the topological category of cauchy spaces”, Acta Mathematica Hungarica, 136:1-15, (2012).
- [14] Lowen-Colebunders, E., “Function classes of cauchy continuous maps”, New York USA, Marcel Dekker Inc., (1989).
- [15] Baran, T. M., & Kula, M., “Local pre-Hausdorff extended pseudo-quasi-semi metric spaces”, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(1):862-870, (2019).
- [16] Baran, M., “Pre T2 Objects in topological categories”, Applied Categorical Structures, 17:591- 602, (2009).