- [5] Buyukyazici, I., “On the approximation properties of two-dimensional q-Bernstein-Chlodowsky polynomials”, Mathematical Communications, 14(2): 255-269, (2009).
- [6] Gonul Bilgin, N., and Cetinkaya, M., “Approximation by three-dimensional q-Bernstein-Chlodowsky polynomials”, Sakarya University Journal of Science, 22(6): 1774-1786, (2018).
- [7] Mursaleen, M., Ansari, J.A., and Khan, A., “On (p,q)-analogue of Bernstein operators”, Applied Mathematics and Computation, 278: 70–71, (2016).
- [8] Kanat, K., and Sofyalioglu, M., “Some approximation results for Stancu type Lupaş-Schurer operators based on (?,)-integers”, Applied Mathematics and Computation, 317: 129-142, (2018).
- [9] Kanat, K., and Sofyalıoğlu, M., “Approximation by (p,q)-Lupaş–Schurer–Kantorovich operators”, Journal of Inequalities and Applications, 2018(1): 217-229, (2018).
- [10] Kanat, K., and Sofyalıoğlu, M., “On Stancu type generalization of (p,q)-Baskakov-Kantorovich operators”, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(2): 1995-2013, (2019).
- [11] Cai, Q. B., and Zhou, G., “On (p, q)-analogue of Kantorovich type Bernstein–Stancu–Schurer operators”, Applied Mathematics and Computation, 276: 12-20, (2016).
- [12] Kanat, K., and Sofyalıoğlu, M., “Some approximation results for (p, q)-Lupaş-Schurer operators”, Filomat, 32(1), 217-229, (2018).
- [13] Acar, T., “(p, q)‐Generalization of Szász–Mirakyan operators”, Mathematical Methods in the Applied Sciences, 39(10): 2685-2695, (2016).
- [14] Kanat, K., and Sofyalıoğlu, M., “Approximation Properties of Stancu-Type (p,q)-Baskakov Operators”, Bitlis Eren University Journal of Science, 8(3): 889-902, (2019).
- [15] Bilgin N. G., and Eren M., “A Generalization of Two Dimensional Bernstein-Stancu Operators”, Sinop University Journal of Science, 6(2): 130-142, (2021).
- [16] Mishra V.N. and Pandey, S., “On (?, ?) Baskakov–Durrmeyer–Stancu operators”, Advances in Applied Clifford Algebras, 27: 1633-1646, (2017).
- [17] Acar, T., Aral, A. and Mohiuddine, S.A., “Approximation by bivariate (p,q)-Bernstein-Kantorovich operators”, Iranian Journal of Science and Technology, Transactions A: Science, 42: 655–662, (2018).
- [18] Karaisa, A., “On the approximation properties of bivariate (p,q)-Bernstein operators”, https://arxiv.org/abs/1601.05250v2, Access date: 28.01.2021
- [19] Izgi, A., and Karahan, D., “On approximation properties of generalised (p,q)-Bernstein operators”, European Journal of Pure And Applied Mathematics, 11(2): 457-467, (2018).
- [20] Cevik, E., “Approximation properties of modified (p,q)-Bernstein type operators”, MSc Thesis, Harran University Institute of Natural and Applied Sciences, Sanliurfa, 16-34, (2019).
- [21] Chakrabarti, R., and Jagannathan, R., “A (p,q)-oscillator realization of two-parameter quantum algebras”, Journal of Physics A: Mathematical and General, 24: L711-L718, (1991).
- [22] Cao, F., Ding, C., and Xu, Z., “On multivariate Baskakov operator”, Journal of Mathematical Analysis and Applications, 307(1): 274-291, (2005).
Optimization Bundle Paths of the Building Envelope for Zero-Carbon Strategies
Damlanur İLİPINAR, Gülin YAZICIOĞLU
Transformed Pair Copula Construction of Pareto Copula and Applications
Fatih ÖZTÜRK, Ahmet Ebrar SAKALLI, Gökmen TAK, Emin TARAKÇI
The Impact of Image Enhancement and Transfer Learning Techniques on Marine Habitat Mapping
Ehab SHAKER, Mohammed Rashad BAKER, Zuhair MAHMOOD
Early Responses of Intercity Travelers to The Threat of COVID-19: The Case of Turkey
Leyla ÜNAL, Hediye TUYDES-YAMAN, Neşe ÖZDEK, Can SANDIRAZ
Rapid Synthesis of PbO-NPs Photocatalysts, Investigation of Methylene Blue Degradation Kinetics
Stability Properties for the Delay Integro-Differential Equation