Ab-initio Calculations of the Half-metallic Ferromagnetic New Variant Perovskites Li2CrO6 and Li2CuO6

Ab-initio Calculations of the Half-metallic Ferromagnetic New Variant Perovskites Li2CrO6 and Li2CuO6

The half-metallic calculations of new variant perovskites Li2CrO6 and Li2CuO6 were carried out by using WIEN2k computational code. First, the ferromagnetic (FM) and non-magnetic (NM) phases were compared, and FM phases were obtained energetically more stable. The equilibrium lattice constants were obtained as 7.63 Å and 7.66 Å for Li2CrO6 and Li2CuO6, respectively. Second, the electronic calculations were performed, and the semiconduction properties were seen in spin-up states while spin-down states showed metallic nature. The band gaps were obtained as 1.806 eV and 1.177 eV for Li2CrO6 and Li2CuO6, respectively. Since variant perovskites Li2CrO6 and Li2CuO6 showed 100% spin polarizations, these were obtained as true half-metallic ferromagnetic materials. Then the total magnetic moments were obtained as 4.00 μB/f.u., 5.00 μB/f.u. When both the electronic and magnetic properties of the compounds are examined, the variant perovskites Li2CrO6 and Li2CuO6 are suitable materials for spintronics applications.

___

  • [1] Misra, P.K., “Chapter 11 – Spintronics”, Physics of Condensed Matter, 339-368, (2012).
  • [2] Hirohata, A., Yamada, K., Nakatani, Y., Prejbeanu, I.L., Dieny, B., Pirro, P., Hillebrands, B., “Review on spintronics: Principles and device applications”, Journal of Magnetism and Magnetic Materials, 509: 166711, (2020).
  • [3] El-Ghazaly, A., Gorchon, J., Wilson, R.B., Pattabi, A., Bokor, J., “Progress towards ultrafast spintronics applications”, Journal of Magnetism and Magnetic Materials, 502: 166478, (2020).
  • [4] Jullière, M., “Tunneling between ferromagnetic films”, Physics Letters A, 54: 225, (1975).
  • [5] Baibich, M.N., Broto, J.M., Fert, A., Nguyen Van Dau, F., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., Chazelas, J., “Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices”, Physical Review Letters, 61: 2472, (1988).
  • [6] Binasch, G., Grünberg, P., Saurenbach, F., Zinn, W., “Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange”, Physical Review B, 39: 4828(R), (1989).
  • [7] Johnson, M., “Spin accumulation in gold films”, Physical Review Letters, 70: 2142, (1993).
  • [8] Liu, C., Shen, T., Wu, H.B., Feng, Y., Chen, J.J., “Applications of magneto-strictive, magneto-optical, magnetic fluid materials in optical fiber current sensors and optical fiber magnetic field sensors: A review”, Optical Fiber Technology, 65: 102634, (2021).
  • [9] Zhang, Y., Zhang, W., Ning, M., Chen, L., Li, H., “Tuning the magnetism of L10-MnGa films by Pt doping”, Applied Surface Science, 542: 148585, (2021).
  • [10] Quiroz, H.P., Calderon, J.A., Dussan, A., “Magnetic switching control in Co/TiO2 bilayer and TiO2:Co thin films for Magnetic-Resistive Random Access Memories (M-RRAM)”, Journal of Alloys and Compounds, 840: 155674, (2020).
  • [11] Nguyen, T.D., Ehrenfreund, E., Vardeny, Z.V., “The spin-polarized organic light emitting diode”, Synthetic Metals, 173: 16-21, (2013).
  • [12] Mondal, R.K., Adhikari, S., Chatterjee, V., Pal, S., “Recent advances and challenges in AlGaN-based ultra-violet light emitting diode technologies”, Materials Research Bulletin, 140: 111258, (2021).
  • [13] Matsushita, M.M., Kawakami, H., Okabe, E., Kouka, H., Kawada, Y., Sugawara, T., “A field-effect transistor consists of spin-polarized TTF-based donor”, Polyhedron, 24: 2870-2875, (2005).
  • [14] De Groot, R.A., Mueller, F.M., van Engen, P.G., Buschow, K.H.J., “New class of materials: half-metallic ferromagnets”, Physical Review Letters, 50: 2024-2027, (1983).
  • [15] Özdemir, E.G., Doğruer, S., “The electronic, half-metallic, elastic, and magnetic properties of new PtWZ (Z = In, Tl, Sn, and Pb) half-Heusler alloys via GGA and GGA+mBJ methods”, Physica Scripta, 96: 125869, (2021).
  • [16] Özdemir, E.G., Doğruer, S., Özcan, A., Merdan, Z., “The effect of structural changes on half-metallic, elastic and magnetic properties of the FeWGa half-Heusler compound via first-principles studies”, Journal of Magnetism and Magnetic Materials, 546: 168872, (2022).
  • [17] Chavan, K.T., Chandra, S., Kshirsagar, A., “Half-metallicity in smallest cage-like cluster of CdTe with doping of transition metal atoms”, Materials Today Communications, 30: 103104, (2022).
  • [18] Bounouala, Z., Goumrhar, F., Drissi, L.B., Ahl Laamara, R., “Half-metallic behavior in zirconium carbide (ZrC) doped with Cr and Mn”, Computational Condensed Matter, 27: e00553, (2021).
  • [19] Zarkevich, N.A., Singh, P., Smirnov, A.V., Johnson, D.D., “Effect of substitutional doping and disorder on the phase stability, magnetism, and half-metallicity of Heusler alloys”, Acta Materialia, 225: 117477, (2022).
  • [20] Xiao, G., Wang, L.L., Rong, Q.Y., Xu, H.Q., Xiao, W.Z., “Half-metallic and magnetic properties of AlN nanosheets doped with nonmagnetic metals: A first-principles study”, Computational Materials Science, 124: 98-105, (2016).
  • [21] Özdemir, E.G., Merdan, Z., “Half-metal calculations of CoZrGe half-Heusler compound by using generalized gradient approximation (GGA) and modified Becke-Johnson (mBJ) methods”, Materials Research Express, 6: 116124, (2019).
  • [22] Sofi, S.A., Gupta, D.C., “Investigation of high pressure and temperature study of thermo-physical properties in semiconducting Fe2ZrSi Heusler”, Physica B, 577: 411792, (2020).
  • [23] Lyange, M.V., Sokolovskiy, V.V., Taskaev, S.V., Karpenkov, D.Y., Bogach, A.V., Zheleznyi, M.V., Shchetinin, I.V., Khovaylo, V.V., Buchelnikov, V.D., “Effect of disorder on magnetic properties and martensitic transformation of Co-doped Ni-Mn-Al Heusler alloy”, Intermetallics, 102: 132-139, (2018).
  • [24] Alrahamneh, M.J., Khalifeh, J.M., Mousa, A.A., “Ab-initio calculations of the structural, mechanical, electronic, magnetic and thermoelectric properties of Zr2RhX (X= Ga, In) Heusler alloys”, Physica B, 581: 411941, (2020).
  • [25] Özdemir, E.G., Merdan, Z., “First-principles calculations to investigate half-metallic band gap and elastic stability of Co(Mo,Tc)MnSb compounds”, Physica E, 133: 114790, (2021).
  • [26] Hoat, D.M., Hoang, D.Q., Binh, N.T.T., Naseri, M., Rivas-Silva, J.F., Kartamyshev, A.I., Cocoletzi, G.H., “First principles analysis of the half-metallic ferromagnetism, elastic and thermodynamic properties of equiatomic quaternary Heusler compound CoCrRhSi”, Materials Chemistry and Physics, 257: 123695, (2021).
  • [27] Fu, J., Song, T., Liang, X., Zhao, G., Liu, Z., “Room temperature ferromagnetic half metal in Mn doped cluster-assembled sodalite phase of III-N compounds”, Journal of Magnetism and Magnetic Materials, 499: 166295, (2020).
  • [28] Özdemir, E.G., Merdan, Z., “First-principles calculations on half-metal ferromagnetic results of VZrAs and VZrSb half-Heusler compounds and Al1-xMxAs (M= Co, Fe and x = 0.0625, 0.125, 0.25) diluted magnetic semiconductors”, Journal of Alloys and Compounds, 807: 151656, (2019).
  • [29] De Paiva, R., Alves, J.L.A., Nogueira, R.A., Leite, J.R., Scolfaro, L.M.R., “Cubic binary compounds MnN and MnAs and diluted magnetic Ga1-xMnxN semiconductor alloys: a first-principle study”, Journal of Magnetism and Magnetic Materials, 288: 384-396, (2005).
  • [30] Sheeba, R.A.J.R., Saravan, R., Berchmans, L.J., “Magnetism in melt grown dilute magnetic semiconductor Ge1-xMnx from electron density”, Materials Science in Semiconductor Processing, 15: 731-739, (2012).
  • [31] Oudrane, D., Bourachid, I., Bouafia, H., Sahli, B., Abidri, B., Rached, D., “Computational insights in predicting structural, mechanical, electronic, magnetic and optical properties of EuAlO3 cubic-perovskite using FP-LAPW method”, Computational Condensed Matter, 26: e00537, (2021).
  • [32] Tian, Y., Ge, Z., Sun, A., Zhu, Z., Zhang, Q., Lv, S., Li, H., “The impact of crystal structures on the magnetic and electronic properties in double perovskite Sr2NiTeO6”, Chemical Physics Letters, 754: 137776, (2020).
  • [33] Kostikova, G.P., Kostikov, Yu P., Troyanov, S.I., Korolkov, D.V., “Chemical shifts of the Lα1,2 lines of niobium and zirconium in the x-ray spectra of niobium and zirconium chlorides”, Inorganic Chemistry, 17: 2279, (1978).
  • [34] Henke, H., “The significance of the Jahn-Teller effect for the phase transition of K2NbCl6 and Rb2NbCl6”, Zeitschrift für Kristallographie, 222: 477-486, (2007).
  • [35] Brik, M.G., Kityk, I.V., “Modeling of lattice constant and their relations with ionic radii and electronegativity of constituting ions of A2XY6 cubic crystals (A= K, Cs, Rb, Tl; X= tetravalent cation, Y= F, Cl, Br, I)”, Journal of Physic and Chemistry of Solids, 72: 1256-1260, (2011).
  • [36] Faizan, M., Khan, S.H., Laref, A., Murtaza, G., “Ab-initio prediction of structural, electronic and magnetic properties of Hexafluoromanganete(IV) complexes”, International Journal of Modern Physics B, 32: 1850270, (2018).
  • [37] Ali, M.A., Murtaza, G., Laref, A., “Exploring ferromagnetic half-metallic nature of Cs2NpBr6 via spin polarized density functional theory”, Chinese Physics B, 29: 066102, (2020).
  • [38] Ali, M.A., Ullah, R., Al-Muhimeed, T.I., AlObaid, A.A., Bibi, S., Kattan, N.A., Rashid, N., Murtaza, G., “Spin-based transport properties of Cs2WX6 (X = Cl, Br) ferromagnets for spin-injected thermoelectric current”, The European Physical Journal Plus, 136: 568, (2021).
  • [39] Ali, M.A., Ullah, R., Abdullah, S., Khan, M.A., Murtaza, G., Laref, A., Kattan, N.A., “An investigation of half-metallic variant perovskites A2NbCl6 (A= K, Rb) for spintronic based applications”, Journal of Solid State Chemistry, 293: 121823, (2021).
  • [40] Ali, M.A., Murtaza, G., Khan, A., Algrafy, E., Mahmood, A., Ramay, S.M., “Magnetoelectronic properties of ferromagnetic compounds Rb2TaZ6 (Z = Cl, Br) for possible spintronic applications”, International Journal of Quantum Chemistry, 120: e26357, (2020).
  • [41] Ullah, R., Ali, M.A., Murtaza, G., Mahmood, A., Ramay, S.M., “The significance of anti-fluorite Cs2NbI6 via its structural, electronic, magnetic, optical and thermoelectric properties”, International Journal of Energy Research, 44: 10179-10191, (2020).
  • [42] Ullah, R., Ali, M.A., Murtaza, G., Khan, A., Mahmood, A., “Ab initio study for the structural, electronic, magnetic, optical, and thermoelectric properties of K2OsX6 (X = Cl, Br) compounds”, International Journal of Energy Research, 44: 9035–9049, (2020).
  • [43] Ullah, R., Ali, M.A., Katubi, K.M., Alsaiari, N.S., Abualnaja, K.M., Verma, A.S., Murtaza, G., “Modeling of bulk modulus of A2BX6 (A= K, Cs, Rb, Tl, NH4; B= tetravalent cation; X= F, Cl, Br, I) using semi-empirical model”, Inorganic Chemistry Communications, 139: 109315, (2022).
  • [44] Blaha, P., Schwarz, K., G. Madsen, G.K.H., Kvasnicka, D., Luitz, J., Laskowsk, R., Tran, F., Marks, L., “WIEN2k: An Augmented Plane Wave Local Orbitals Program for Calculating Crystal Properties”, Technische Universitat Wien, Austria, ISBN 3-9501031-1-2, (2001).
  • [45] Tran, F., Blaha, P., “Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential”, Physical Review Letters, 102: 226401, (2009).
  • [46] Blaha, P., Schwarz, K., Tran, F., Laskowski, R., Madsen, G.K.H., Marks, L.D., “WIEN2k: An APW+lo program for calculating the properties of solids”, The Journal of Chemical Physics, 152: 074101, (2020).
  • [47] Singh, D., Planes Waves, “Pseudo-Potentials and the LAPW Method”, Kluwer Academic Publishers, Boston, Dortrecht, London, (1994).
  • [48] Perdew, J.P., Burke, K., Wang, Y., “Generalized gradient approximation for the exchange-correlation hole of a many-electron system”, Physical Review B, 54: 16533-16539, (1996).
  • [49] Perdew, J.P., Burke, S., Ernzerhof, M., “Generalized gradient approximation made simple”, Physical Review Letters, 77: 3865-3868, (1996).
  • [50] Murnaghan, F.D., “The Compressibility of Media under Extreme Pressures”, Proceedings of the National Academy of Sciences, United States of America, (1944).